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1. Details of Spatial-Temporal Transformer

The details of 3D W-MSA and Mix-FFN are presented
below:

• 3D Windows Multi-head Self-Attention is an efficient
implementation for 3D input. In detail, we evenly
partition the 3D input feature map into a set of non-
overlapping windows. For example, if the input size is
T ×H ×W and the window size is t×h×w, we first
partition the input into ⌈T

t ⌉ × ⌈H
h ⌉ × ⌈W

w ⌉ windows,
and then perform multi-head self-attention within each
window. Finally, we merge the features into a new 3D
tensor that has the same shape as the input tensor.

• Mix-FFN like [15] enables more efficient computa-
tion than Video Swin Transformer [10] for information
exchange between local windows. Specifically, Mix-
FFN adds a depth-wise 3× 3 convolution between the
two MLPs as: MLP → DW-Conv → MLP. The in-
troduction of depth-wise 3 × 3 convolution helps to
connect non-overlapping windows [17].

2. Experiment

2.1. Details about Global Category Context

We experiment different optimization strategies (i.e.,
MSE and Exponential Moving Averages) for GCC. The
experimental results are illustrated in Figure 1, as we can
see, MSE loss consistently outperforms EMA. Also, GCC
shows the best performance when the number of clusters is
3 with either MSE or EMA. Therefore, the number of clus-
ters of GCC is set to 3 throughout this paper.

2.2. Transformer-based Backbone

In order to verify the generalization of our proposed
method for different types of backbones, we additionally
used the Swin Transformer [9] as our backbone. As shown
in Table 1, Our proposed SSLTM still demonstrates advan-
tageous performances than all compared methods.

Figure 1. GCC performs the best when the number of clusters is 3.
MSE loss is more suitable to update GCC, compared with EMA.

Table 1. All results are obtained with Swin-S [9] as backbone,
overall higher than those of ResNet-101 [7] in our manuscript.

Image-Based Params mIoU Video-Based Params mIoU

DeepLabv3+ [4] 59.5M 37.48 ETC [8] 55.5M 40.82
UperNet [14] 58.1M 39.49 NetWarp [5] 55.5M 40.22
PSPNet [18] 64.1M 38.18 TCB [11] 55.5M 41.42
OCRNet [16] 55.5M 39.56 SSLTM (w/o MT) 59.3M 43.11

Segmenter [12] 57.8M 39.94 SSLTM (w/ MT) 59.3M 44.37

2.3. Visual comparisons between w/ STT and w/o
STT

The visualized results are shown in Figure 2. One can
observe that the segmentation results without STT look cor-
rect in principle yet messy in details. Meanwhile, it is com-
mon to spot inconsistencies between predictions of adjacent
frames, if STT is not used. As a comparison, the segmenta-
tion results with STT are smooth and consistent.

2.4. Results on the CityScapes test set

We compare with the current sota method on the
cityscapes test set. The experimental results are shown in
Table 2. Our proposed SSLTM demonstrates advantageous
performances over all competitors.
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Table 2. Comparisons on the CityScapes test set. Our proposed
SSLTM demonstrates advantageous performances over all com-
petitors. C: Cityscapes coarse annotation. V: Cityscapes video.
MV: Mapillary Vistas.

Model Extra Data Training Method mIoU

Zhu et al. [19] V, MV semi-supervised 83.5
Panoptic-DeepLab [3] MV supervised 84.1

OCR [16] C, MV supervised 84.2
Panoptic-DeepLab [3] C, V, MV semi-supervised 85.1

Tao et al. [13] C, MV semi-supervised 85.1
Naive-Student [2] V, MV semi-supervised 85.2

Warp-Refine Propagation [6] C, V, MV semi-supervised 85.3
Borse et al. [1] C, MV semi-supervised 85.6

Ours V, MV semi-supervised 86.4

Frame GT w/ STT w/o STT
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Figure 2. Visual comparisons between w/ STT and w/o STT on
the validation set of VSPW. STT is beneficial to the consistency of
semantic prediction.

2.5. Analysis of Mean Teacher

We report the comparison of Mean Teacher semi-
supervised training method with iterative semi-
supervised [2] training method in Figure 3. It can be
observed that Mean Teacher can significantly save disk
I/O and training time, while also achieving better segmen-
tation performance. It is worth noting that the iterative
semi-supervised training consists of three sequential steps:
training of the teacher model, label generating, training of
the student model. In the label generating step, additional
disk I/O is compulsory to store pseudo labels. In contrast,
Mean Teacher training method only requires one training
procedure, without consuming additional disk access.

2.6. Reference Frame Selection and Model Robust-
ness

As shown in Figure 4a, the mIoU increases with enlarg-
ing temporal distance, till saturates at around 60 frames.
It validates our ad-hoc choice to some extent, as the aver-
age frame number per video in the VSPW dataset is 71.
As for model robustness, we evaluate performance on two

label generating

Figure 3. Comparison of Mean Teacher and Iterative Semi-
Supervised Learning. The texts next to the dots represent the re-
quired time (hours), Mean Teacher takes much less time to reach
better performance than iterative semi-supervised learning.

(a) (b)

Figure 4. (a) Reference frame selection in RFCE. (b) Performance
with noisy and clean reference frames.

subsets from the original VSPW validation set, i.e., “Noisy
Data”, where reference frame contains different categories
from the query frame, and the rest “Clean Data”. As shown
in Figure 4b, the RFCE performs consistently better than
the baseline (QFCE), and adding GCC further improves the
performance in both cases. Notably, RFCE still works well
even when the reference frame contains noise.

2.7. Failure Modes

As shown in Figure 5, when the temporal distance be-
tween the first frame and the last frame of the video is very
long, the video scene often changes a lot, and the tempo-
ral correlation between the query frame and the reference
frame may break. Although we greatly reduce this effect
using GCC modules, VSS is still a challenge in long video
scenarios.
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Figure 5. Some failure cases in long video scenarios.
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