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1. Model Manipulation
Given enough samples from the trained BRDF-GAN generator (10000 in our case), the latent space W of a style-based

generator, can be analyzed with PCA [11]. We expect the first principal components to expose interpretable controls over
features of the reconstruction. In Fig. 1 we show how the first three components correspond roughly to the skin tone (given
our augmentation), gender and age variations. These show that our model learns a meaningful latent space and enable us to
perform semantic manipulations directly on the reflectance UV maps.
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Figure 1. Manipulation of a BRDF-GAN projection. By performing PCA on the latent space of BRDF-GAN, we can manipulate the most
important components, which roughly correspond to c) skin tone, d) gender and e) details (wrinkles, freckles). The arrows indicate the
direction of the manipulation of the PCA component.

2. Ablation Study
We perform three ablation studies to validate our architectural and optimization choices. The first ablation, shown in

Fig. 2, shows the effect of the losses used in the GAN inversion part of our method. For each example, we remove one of
the following losses: the identity loss LID, the perceptual loss Lper, the photometric loss Lph and the W regularization loss
LW. Removing the landmark loss Llan or the shape and expression regularization losses Ls,Le, fails the optimization, as
the shape fitting is misplaced.
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Figure 2. Ablation study on the losses of the GAN inversion optimization. For each example, we remove the shown loss from the
optimization, and show the rendered result IR (top), the diffuse albedo AD (bottom-left) and the shape S (bottom-right). It is apparent
how all the proposed losses are required, in order to obtain facial shape and reflectance with high identity and visual similarity, while also
maintaining an albedo without scene illumination.
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Figure 3. Ablation study on the losses of the GAN tuning optimization. For each example, we remove the shown loss from the optimization,
and show the rendered result IR (top), the diffuse albedo AD (bottom-left) and the shape S (bottom-right). Despite most cases showing a
highly optimized rendered result, without the proposed losses combination, the albedo absorbs residual scene illumination, not captured by
our rendering, in cases c), e), f), Also, since we do not optimize the shape S during tuning, the shape remains the same in these examples.

a) Input b) Ours c) no GAN tuning d) W+ instead of W [14]e) Pytorch3D [15] shader f) z fitting instead of W

Figure 4. Ablation study on method choices. For each example, make the shown change during the optimization, and show the rendered
result IR (top), the diffuse albedo AD (bottom-left) and the shape S (bottom-right). c), e)and f) show the importance of W fitting, our
photorealistic facial shading and the GAN tuning. d) shows that W+ optimization, as performed by [14], achieves great likeness in the
albedo, but does not maintain the semantics of the facial reflectance.

Moreover, in Fig. 3, we perform a similar ablation for the losses used during the GAN tuning part of our method. The
removal of the photometric Lph and LPIPS LLP losses, shows their importance in achieving higher likeness to the input



image, The removal of the flip Lflip and chromaticity Lκ losses shows their need in maintaining an albedo without scene
illumination, when compared to vanilla pivotal tuning [16].

Finally, in Fig. 4, we show an ablation study on choices regarding the optimization method. In Fig. 4 c), we show the
optimized result, without our GAN tuning, Fig. 4 d) shows an extended latent space W+ optimization, rather than W, which
means that each slice of W is separately optimized for each layer of the generator network and is suggested by [14]. Such
an approach also achieves great likeness in the optimized rendering, but disturbs the statistics of the generator, so that scene
illumination is absorbed by the albedo, and the network cannot be accurately manipulated (Fig. 1). Similar observations are
also reported by [16]. In Fig. 4 e) we show the full optimization (inversion and tuning), while using the Pytorch3D [15]
implementation of Phong shader, which also only supports the diffuse albedo AD, no spatial variation in specular roughness
and no subsurface scattering optimization. Fig. 4 f) shows the optimization of the latent variable z which is passed through
a mapping network before given to the generator. Such a fitting is more constrained and cannot reach a satisfying identity
similarity.

3. Dataset Augmentation
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Figure 5. Skin tone augmentation comparisons, with adjusted melanin m and hemoglobin h, between (top) LightStage-measured look-up
table melanin-hemoglobin of Gitlina et al. [10], (middle) our proposed masked histogram matching and (bottom) inverse-rendering based
manipulation of Alotaibi and Smith [17].

We perform a comparison of our proposed histogram matching albedo augmentation, against a LightStage captured
melanin-hemoglobin manipulation method [10], and a melanin-hemoglobin manipulation based on inverse rendering [2].
Our method achieves comparable performance to physics-based skin models [1,10], without requiring the calculation of such
complex interactions, as shown in Fig. 5.

4. Additional Results
We present additional results of multi-view capturing in Figs. 6,7,8. In each case we ask the subject to take three uncon-

strained mobile phone images, from the front and the side. We show that these are enough to create an accurate photorealistic
avatar of the subject, using our method. In total, capturing takes less than 10 seconds and processing less than a minute.

Additional to the quantitative comparison on identity similarity presented in the main manuscript, we also perform and
present here a quantitative comparison on shape reconstruction. Following the benchmark proposed by GANFit [6], we
reconstruct the 53 subjects from the MICC Florence 3D Faces dataset (MICC) [3] with our facial shape and measure their
distance (in nm) from the dataset shapes, using the open-source benchmark code of GANFit [6]. MICC includes three
subcategories, “cooperative”, “indoor” and “outdoor”, on which we report of findings separately. Instead of 5 images [6],
we only use 3 random images from each video for the reconstruction. We then perform dense alignment and measure the
point-to-plane distance and present our findings in Tab. 1.

Our method performs similarly in shape reconstruction to GANFit [6] and GANFit++ [7], and significantly better when
compared to previous methods [5,8,18] and Fast-GANFit [7]. GANFit reconstructions are slightly closer to the ground truth
shapes. This can be explained by the fact that we optimize both the shape mesh and the texture normals, and thus a part of
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Figure 6. Additional multi-view capture results, using our method. From left to right: a) three input images, b) rendered fitting using our
method, c) diffuse albedo AD , specular albedo AS and normals NS , d) rendered shape S and e) rendered results on various environments.
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Figure 7. Additional multi-view capture results, using our method. From left to right: a) three input images, b) rendered fitting using our
method, c) diffuse albedo AD , specular albedo AS and normals NS , d) rendered shape S and e) rendered results on various environments.

the shape information is explained in the normals domain rather than in the actual shape space. For a fair comparison, we
only compared the meshes, potentially missing details. Finally, as shown in the main manuscript, our method scores first in
identity similarity, while also acquiring relightable reflectance textures.



3 Mobile Phone
Pictures

Shape and 
Reflectance Fitting

Acquired Facial 
Reflectance 

Photorealistic 
Rendering

Figure 8. Additional multi-view capture results, using our method. From left to right: a) three input images, b) rendered fitting using our
method, c) diffuse albedo AD , specular albedo AS and normals NS , d) rendered shape S and e) rendered results on various environments.

Cooperative Indoor Outdoor
Method Mean ± Std. Mean ± Std. Mean ± Std.
Tran et al. [19] 1.93± 0.27 2.02± 0.25 1.86± 0.24
Booth et al. [5] 1.82± 0.29 1.85± 0.22 1.63± 0.16
Genova et al. [9] 1.50± 0.14 1.50± 0.11 1.48± 0.11
GANFit [6] 0.95± 0.10 0.94± 0.10 0.94± 0.10
GANFit++ [7] 0.94± 0.17 0.92± 0.14 0.94± 0.19
Fast-GANFit [7] 1.11± 0.25 0.98± 0.15 1.16± 0.18
Ours 0.95± 0.18 0.97± 0.20 0.98± 0.21

Table 1. Quantitative benchmark comparison of shape reconstruction, on the MICC Florence 3D Faces dataset, using point-to-plane
distance, as used in the open-source benchmark of [7]. we compare our results with the reported results of Tran et al. [19], Booth et al. [5],
Genova et al. [9], GANFit [6], GANFit++ [7] and Fast-GANFit [7].

5. Implementation Details
As briefly described in the main manuscript, FitMe implementation builds on the public repository of StyleGAN2-ADA

[12], in pytorch, both for the generator and the discriminator. However, we make the following changes. a) The generator G is
branched on the last convolutional blocks, which is achieved feeding the output of the last single-branch layer, to 3 different
copies of the last branched module. The generator follows the skip-connections architecture of [12]. b) The discriminator
is also branched, and follows the resnet architecture of [12]. The output of each branch is concatenated, and fed to the last
convolutional block and the fully connected layers.

For the differentiable photorealistic rendering, we create a shader based on the Blinn-Phong model [4], following AvatarMe++
[13]. The implementation of the model is done by extending the shader and shading classes in Pytorch3D [15].

Our optimization is based on a number of hyperparameters λi, each corresponding to a loss described in the paper. We
find these empirically, and present them below. For the inversion, we use a learning rate of linv = 1 × 10−2 and for the
tuning we use a learning rate of lpti = 8× 10−4. In Table 2 and Table 3 we present the values which we find most optimal,
when optimizing for crop and rendering at 512× 512 pixels, 250 iterations for inversion and 30 iterations for tuning.



hyper-param λ1 λ2 λ3 λ4 λ5 λ6 λ7

corresponding loss Llan Lph LID Lper LW Ls Le

value 100 0.5 1.0 25.0 5× 10−2 5× 10−4 5× 10−4

Table 2. Hyper-parameter values and their corresponding loss terms, used for the GAN-inversion part of the proposed method.

hyper-param λ8 λ9 λ10 λ11

corresponding loss LLP Lph Lflip Lκ

value 2.0 0.5 0.8 0.35

Table 3. Hyper-parameter values and their corresponding loss terms, used for the GAN-tuning part of the proposed method.
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