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Figure S-1. 3D estimation of GUPNet with the proposed BCA
module.

S-1. Network architecture for experiments on
the KITTI dataset

To validate the effectiveness of bi-contextual attention
(BCA) for the monocular 3D object detection on the KITTI
dataset, we add the BCA module into three mature meth-
ods: GUPNet [4], DEVIANT [3], and DID-M3D [5]. These
three methods extract RoI features Xroi ∈ Rn×r×7×7 from
the backbone feature map using RoIAlign [1], where r is a
channel dimension of n objects. Xroi passes through multi-
ple parallel heads for 3D estimation. We describe how we
integrate the proposed BCA with each method in the para-
graphs below.

GUPNet with BCA. Figure S-1 illustrates 3D estimation
of GUPNet with the proposed BCA module. We adopt
the BCA module before the depth bias module in GUPNet.
Specifically, we process RoI features Xroi using one con-
volution operation and global average pooling to obtain a
feature matrix Xd ∈ Rn×d, where d = 256 is a feature di-
mension. Also, we extract global features Xg ∈ Rg×d by
feeding the backbone feature map into three convolutional

Figure S-2. 3D estimation of DID-M3D with the proposed BCA
module.

layers, global average pooling, and reshape operator as done
in the proposed BAAM. The BCA module combines Xd
and Xg to obtain bi-contextual depth features X̃d ∈ Rn×d.
Unlike the depth bias module takes Xd as the input in the
original GUPNet, the depth bias module in GUPNet with
BCA takes X̃d to yield the depth bias and uncertainty. Then,
the depth bias and uncertainty are used for 3D estimation as
done in GUPNet.

DEVIANT with BCA. DEVIANT has a similar process to
GUPNet for 3D estimation. DEVIANT also contains the
depth bias module and feeds Xd into the depth bias module.
In this work, as done in GUPNet with BCA, we add BCA
before the depth bias module to obtain X̃d. Then, X̃d is fed
into the depth bias module for 3D estimation.

DID-M3D with BCA. As shown in Figure S-2, we add the
BCA module before the attribute depth module in DID-
M3D. Specifically, we first flatten the RoI features Xroi
to construct attribute features Xatt ∈ Rn×r̃, where r̃ =
r×7×7 is a flattened feature dimension. We further extract
global features Xg ∈ Rg×r̃ from backbone feature maps
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Method
A3DP-Abs A3DP-Rel Rotate

Mean c-l c-s Mean c-l c-s error

OF 25.19 47.31 23.13 22.85 46.21 20.31 11.96
BF 23.66 45.59 21.84 20.59 42.64 17.15 12.64

Table S-1. Ablation study for 3D rotation estimation. ‘OF’ uses
the object features to regress rotation, while ‘BF’ uses the output
features of the BCA module.

through three convolutional layers, global average pooling,
and reshape operator. Given the attribute features Xatt and
the global features Xg, the BCA module aggregates them
into the bi-contextual attribute features and restores their
shape into X̃att ∈ Rn×r×7×7. The attribute depth module
takes X̃att to estimate depth maps for 3D estimation.

S-2. Implementation details for the ablation
study of AGM

For the ablation study of the proposed attention-guided
modeling (AGM), we replace AGM with three different
shape estimation methods: Regression, PCA-basis, and
Divide-and-Conquer in GSNet [2]. We present detailed
descriptions of these methods in the paragraphs below.
For training, we follow the same strategy as the proposed
BAAM.

Regression. Regression method directly estimates mesh
vertices m from object features Xo using three fully-
connected layers.

PCA-basis. PCA-basis method estimates the shape pa-
rameters β ∈ R10 from the object features Xo through
three fully-connected layers. Then, the shape parameters
are decoded to mesh vertices via m = m̄s + Pβ, where
P ∈ R3v×10 is the PCA-basis. To construct PCA-basis P,
we implement PCA on the template offsets OT

s and find the
ten dimensional shape basis.

Divide-and-Conquer. Divide-and-Conquer method [2]
transfers the object features Xo into three fully-
connected layers to generate four PCA parameters
Bdiv = [β1

div, β
2
div, β

3
div, β

4
div], where βi

div ∈ Rbi is i-th shape
parameters consisting of bi dimension. Then, they are
decoded to four different meshes with PCA-bases. Finally,
four decoded meshes are blended into estimated mesh m
with their respective classification probabilities.

S-3. Further experimental results
3D rotation estimation based on BCA features. The pro-
posed BAAM simply regresses the object feature Xo to es-
timate 3D rotation Pr. This is because the object features
already encode the rich information for rotation, and the fur-
ther process to interfuse external object structure may cause

Method
3D@IOU=0.7 BEV@IOU=0.7

Easy Mod. Hard Easy Mod. hard

DEVIANT 21.88 14.46 11.89 29.65 20.44 17.43
DEVIANT + BCA 21.82 14.52 11.99 30.03 20.75 17.60

Table S-2. Performance comparison of DEVIANT without and
with the proposed BCA for the monocular 3D object detection on
KITTI test set. We highlight the best results in bold.

Method
A3DP-Abs A3DP-Rel

Mean c-l c-s Mean c-l c-s

GSNet 13.83 27.29 13.63 4.42 11.84 2.36
BAAM 20.73 36.63 22.19 8.17 18.98 5.99

Table S-3. Performance comparison of BAAM with GSNet on
Pascal3D+ [6]. We highlight the best results in bold.

Figure S-3. Qualitative comparison of the proposed BAAM with
GSNet. We use red ovals to emphasize the failure examples of
GSNet.

Figure S-4. Visualization of relation-aware attention scores. Red
texts are relation-aware attention scores for a car in a red box to
the other cars.

information loss. To validate this, we re-design BAAM
to estimate 3D rotation using features extracted from the
BCA module. As shown in Table S-1, output features of
the BCA module degrade rotation performance in terms of
both A3DP-Rel and A3DP-Abs. This indicates that the pro-
posed BCA is ineffective for 3D rotation estimation, while
it is essential for 3D translation estimation.

Experiments on KITTI test set. We further report the per-
formance of the proposed BCA module on KITTI test set
in Table S-2. We observe that the BCA module improves the
performance of DEVIANT [3] in all metrics except ‘Easy’
in ‘3D@IOU=0.7’ metric.
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Results on another dataset. Table S-3 compares BAAM
with GSNet on the Pascal3D+ [6] dataset, which also pro-
vides both 3D pose and shape labels. We evaluate each per-
formance with A3DP and observe that the proposed BAAM
significantly outperforms GSNet on the Pascal3D+.

More qualitative results: Figure S-3 shows the qualitative
comparison of the proposed BAAM with GSNet. BAAM
estimates 3D pose and shape more precisely and eliminates
duplicated detections more clearly than GSNet. Figure S-4
visualizes relation-aware attention scores for a car in a red
box to the other cars. We see that front and distant objects,
which are critical to the relative depth, present high atten-
tion scores for the relation-aware attention of BCA.

Qualitative comparison of 3D NMS with 2D NMS. Fig-
ure S-5 shows qualitative comparison of the proposed 3D
NMS with the standard non maximum suppression (2D
NMS). We can see that 3D NMS faithfully eliminates du-
plicated objects.
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Figure S-5. Qualitative comparison of the proposed 3D NMS with the standard 2D NMS. The first column shows input images. The
second column represents 2D bounding boxes after 2D NMS and 3D NMS, while the third column illustrates reconstructed 3D scenes in
the Bird’s-eye view. We use red ovals to emphasize the failure examples of 2D NMS.
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