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Figure 1. A detailed architecture of rigid blurring kernel (RBK).

16

𝜁!"#$"%

𝜁&'!()*

�̂�$

16

16

𝜁&'!()*
+

�̂�+$

𝜁!"#$"%
+

𝐶𝑜𝑟𝑟$%#,!"#

𝐶𝑜𝑟𝑟$%#,&'!

32

32

𝜁&'!()*
-"..

𝜁!"#$"%
-"..

�̂�$

64 $𝜂$

Figure 2. Detailed description about a correlation part of mo-
tion aggregation module (MAM). This picture includes process
for computing correlation between ζpmotion, ζpsample, and η̂p

i .

Notation ls Cd1 Cd2 Cd3 Cd4 Nm Ns Nc Nf

Value 64 128 64 32 16 (1 + k) (Nc + Nf ) 64 64

Table 1. Notations for adaptive weight proposal (AWP) and corre-
sponding values used in our experiment as default.

A. Additional Implementation Details

A.1. Training

DP-NeRF is implemented on two Nvidia RTX 3090
GPUs based on the published code and dataset for Deblur-
NeRF [2] using PyTorch [5]. Training images are resized to
600×400 across the entire dataset to train the DP-NeRF. In
addition, we start to optimize proposed components, rigid
blurring kernel (RBK), adaptive weight proposal (AWP),
and color composition (CC), after 1200 training iterations
with a pure NeRF [3] to obtain coarse scene representation.

A.2. Architectural Detail

Figures 1, 2, 3, and 4 describe the DP-NeRF architecture
to describe in detail. View information ls for each image is
embedded with 64 channels in a simple embedding layer.
Rigid Blurring Kernel (RBK). As shown in Figure 1, RBK
consists of one shared encoding branch E and three decod-
ing branches with simple MLPs (W , R, and L). Encoding
branch E consists of an MLP with four fully-connected lin-
ear layers, with each layer having 64 dimensions and ReLU
activation function. Decoding branches for ms;0,...,k, rs,
and vs also consist of an MLP with one linear layer with
32 dimensions and an output linear layer. The output chan-
nel dimensions for ms;0,...,k, rs, and vs is k, 3k, and 3k,
respectively, where k is a hyper-parameter that controls the
number of rigid camera motions. Note that, ms;0,...,k is nor-
malized along the motion axis k to ensure

∑k
i=0 ms;i = 1.

Adaptive Weight Proposal (AWP). First of all, we addi-
tionally describe a motivation of the complex architecture
design of AWP. Intuition of AWP architecture is to fully use
the spatial occupancy information of samples on the rays.
When we use the similar module based on inter-motion cor-
relation with rendered depth values on each rays, we could
not get the improved results. The reason was supposed
to be insufficient occupancy information of one scalar ren-
dered depth value per ray. Hence, we design AWP to fully
reflect the information to use rich correlation between the
rays. Here are description of AWP architecture with de-
tailed notations. Please refer to Figure 2, Figure 4, and Ta-
ble 1 for architecture design and corresponding notations.
Note that, we omit the notation for the batch dimension
for clarity. Before forwarding to motion aggregation mod-
ule (MAM), extracted depth feature ζpi,j ∈ RNm×Ns×Cd1

from the second-to-last layer of the NeRF is embedded in
ζ̂pi,j ∈ RNm×Ns×Cd2 via the simple four-layered MLP with
ReLU activation, where Nm and Ns denote the dimensions
of the motion axis and sample axis, respectively. Nm is
the number of blurring rays, which is a summation of the
number of motion (k) and original ray (1). Ns is the total
number of samples, which is a summation of the number of
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a) Rigid Blurring Kernel b) Adaptive Weight Proposal
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c) Color Composition
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Figure 3. Overall pipeline of DP-NeRF, which is same as figure in the main paper.
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Figure 4. Architecture of motion aggregation module (MAM),
which is same as figure in the main paper.

coarse samples (Nc) and fine samples (Nf ). We then, apply
feature modulation (FM) [8] to generate ray-wise represen-
tative features, ηpi ∈ RNm×Cd2 . To impose the view- and
direction-information for the rays, ls and positional embed-
ded dp−rig

s;0,...,k are concatenated and forwarded to the simple
MLP to extract η̂pi ∈ RNm×Cd3 . To aggregate the implicit
information between the modeled blurring rays, we forward
ζ̂pi,j and η̂pi to the MAM. The MAM then aggregates the ex-
tracted features from ζ̂pi,j and η̂pi based on the computed cor-
relation between the decomposed information along each
motion and sample axis.

The MAM is formulated in the main paper as follows:

MAM(ζ̂pi;j , η̂
p
i ) = MLP

(
cat(corr(η̂pi , ξ

p
motion, ξ

p
sample))

)
,

(1)
where ζpmotion ∈ RNs×Cd3 and ζpsample ∈ RNm×Cd3 are
embedded via a one-layer MLP and attentive pooling [1]
along the motion and sample axis. Modulated feature
ηpi and attentive pooled features ζpmotion and ζpsample are

embedded again in η̂′pi , ζ ′psample and ζ ′pmotion as the same
channel dimension Cd4 before computing the correlation
maps. We then compute two correlations, Corrint−mot and
Corrint−sam, which represent the inter-motion and inter-
sample correlations, respectively (Figure 2). Because ζ̂pi,j
consists of a sample dimension and a motion dimension,
we apply inter-sample and inter-motion design to investi-
gate the inter-sample and inter-motion correlations. The
each type of correlation score maps enhances the correla-
tion of each dimension and aggregate them with modulated
features via matrix multiplication. The enhanced features,
ζcorrsample and ζcorrmotion, are then concatenated and forwarded
to the 64-channel MLP, followed by the residual connec-
tion of η̂i to generate our final motion-aggregated feature
η̃i. Note that, the dimensions of η̂i and η̃i are the same.
Tone Mapping. Before color composition for each
color from the blurring rays and the composition weights
ms;0,...,k or m̃p

s;0,...,k, we should note that each color
Ĉp

s;0,...,k is tone-mapped from the predicted scene irradi-
ance from a NeRF similar to [2]. Gamma function g for
the tone mapping function is simply set as shown in Eq. 2
in a similar manner to [2] because there is no significant dif-
ference in performances when either a gamma function or
learnable MLP is employed as the tone mapping function.

g(c′) = c′
1

2.2 , (2)
where c′ denotes the predicted radiance from the NeRF in
DP-NeRF. The types of tone-mapping function does not sig-
nificantly influence the predicted radiance due to the consis-
tent exposure of the dataset. Hence, we can rewrite the full
color composition of B̂p

s and B̃p
s as shown in Eq. 3, with g

omitted in the main paper due to page limitations.

B̂p
s = ms;0 g(Ĉ

p
s;0) +

k∑
i=1

ms;i g(Ĉ
p−rig
s;i )

B̃p
s = m̃p

s;0 g(Ĉ
p
s;0) +

k∑
i=1

m̃p
s;i g(Ĉ

p−rig
s;i )

(3)



B. Evaluation Results on Real Scene
Quantitative Results. We present quantitative evaluation
results for camera motion and defocus blur in the real scene
dataset in Tables 2 and 3. The results show that DP-NeRF
improves the quantitative performance for all of the evalua-
tion metrics, especially on LPIPS. In addition, it is clear that
PSNR and SSIM cannot fully represent the realistic percep-
tual quality of rendered images as argued by Nerfies [4] in
their paper. Hence, the perceptual quality should be eval-
uated by comparing LPIPS and the rendered image quality
visually.
Qualitative Results. We present the qualitative results in
Figures 5 and 6. The results show that DP-NeRF(RBK)
and DP-NeRF(RBK+AWP) both outperform the NeRF and
baseline in terms of perceptual quality for most of the
scenes. It demonstrates that our model produces more accu-
rate 3D reconstruction quality with a realistic, clean NeRF.
In addition, DP-NeRF enhances the 3D geometric and ap-
pearance consistency in several scenes. For example, due
to the complex depth and similar texture of the forest re-
gion, baselines [2,3] have difficulty in predicting the correct
geometry in the Heron scene (4th-row in Figure 5). How-
ever, our model predicts the region more accurately, illus-
trating that DP-NeRF can model complex 3D space more
accurately.

C. Additional Ablation Results
C.1. RBK Analysis

Modeling Analysis. We illustrate how our RBK models
camera motion and defocus blur as ray rigid transforma-
tion by presenting a visualization of the modeled kernel
and rendered images from each of the transformed camera
views in Figures 7 and 8. Figures 7 (a) and 8 (a) shows
the transformed ray origin and direction derived from the
trained DP-NeRF with paired images. Note that, each col-
ored transformed camera origin and ray direction pairs with
a rendered image with the same colored box. Each im-
age also has the same notation as presented in the main
paper (Ĉp

s;0 and Ĉp
s;1,...,k) to assist in understanding. Fig-

ures 7 (b)-(f) and 8 (b)-(f) present rendered images from
the transformed cameras, which are used to composite the
blurred image B̃p

s . Figure 7 (g) and 8 (g) present the com-
posited blurred image from images (b)-(f) with composition
weights as we mentioned in the main paper. We demon-
strate that the composited blurred image B̃p

s is successfully
generated, with a similar appearance to the reference image
Bp

s (Figures 7 (h) and 8 (h)). Figures 7 and 8 show that DP-
NeRF can model the blurred image B̃p

s so that it is similar
to reference image Bp

s for both type of the blur.
The visualizations of given ray rps(= rps;0) and rigidly

transformed (RT) rays rp−rig
s;1,...,k in Figures 7 (a) and 8 (a)

demonstrate that the camera motion and defocus blur can
be successfully modeled with the RBK imitating camera
movement or focus plain decision by rigidly warping the
given scene camera with the SE(3) field. It is obvious
that camera motion blur can be successfully modeled using
the RBK because it models the blurring process using rigid
camera transformation. Figure 7 (a) presents the results of
the camera shaking during image acquisition, which leads
to camera motion blur.

Interestingly, for defocus blur, there is a plane where the
RT rays intersect (Figure 8 (a)), and this is the predicted
focus plane. Specifically, RBK imitates the defocus blur-
ring by approximating the depth of field process locating
the transformed rays on the virtual aperture. The predicted
transforms of the rays naturally decide the focus plane as we
described in Figure 8 (a). If the depth value of a given ray
is not on focus plane, focus blur is naturally induced by the
color composition of the given ray and the other RT rays,
which penetrate the other surrounding parts of the scene.

In addition, Figures 7 (b)-(h) and 8 (b)-(h) show that we
can render images related to the construction of the blurred
image for a scene. This form of image decomposition can
determine how the blurred image in a scene is generated
during image acquisition with respect to change in the cam-
era settings, such as camera motion or focus plain informa-
tion. Furthermore, RBK modeling guarantees the geometric
and appearance consistency of each rendered image.

C.2. Effectiveness of the RBK and AWP

We present the effectiveness of the RBK and AWP with
ablation analysis using the synthetic (Table 4) and real
scene (Tables 5 and 6 for camera motion and defocus blur,
respectively) datasets. Qualitative comparisons are also pre-
sented in Figures 5 and 6. For real scene dataset, it seems
to be marginal improvement with AWP. Actually, blurring
kernel is affected by the depth in case of the out-of-plane
camera motion blur and general defocus blur as mentioned
in [6,7]. However, for provided camera motion blur dataset,
the blur type is close to in-plane camera motion blur, which
leads to the marginal improvement. In addition, shape of the
blurring kernel can change depending the depth in both blur
types. Instead to directly model kernel shape change, we
mitigate the issue through adaptive weights between trans-
formed rays from AWP. Our model shows the more satisfy-
ing results with geometrically clean images with RBK. In
addition, we can find that our model with AWP get more
detailed clean results thanks to above adaptive weights ap-
proximation.



Camera Motion
Ball Basket Buick Coffee Decoration

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 24.08 0.6237 .3992 23.72 .7086 .3223 21.59 .6325 .3502 26.48 .8064 .2896 22.39 .6609 .3633
Deblur-NeRF [2] 27.36 .7656 .2230 27.67 .8449 .1481 24.77 .7700 .1752 30.93 .8981 .1244 24.19 .7707 .1862

DP-NeRF 27.20 .7652 .2088 27.74 .8455 .1294 25.70 .7922 .1405 31.19 .9049 .1002 24.31 .7811 .1639

Camera motion
Girl Heron Parterre Puppet Stair Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 20.07 .7075 .3196 20.50 .5217 .4129 23.14 .6201 .4046 22.09 .6093 .3389 22.87 .4561 .4868 22.69 .6347 .3687
Deblur-NeRF [2] 22.27 .7976 .1687 22.63 .6874 .2099 25.82 .7597 .2161 25.24 .7510 .1577 25.39 .6296 .2102 25.63 .7675 .1820

DP-NeRF 23.33 .8139 .1498 22.88 .6930 .1914 25.86 .7665 .1900 25.25 .7536 .1505 25.59 .6349 .1772 25.91 .7751 .1602

Table 2. Quantitative results for the real scene camera motion blur. Each color shading indicates the best and second-best result,
respectively.

a) Naïve NeRF b) Deblur-NeRF c) DP-NeRF(RBK) e) Referenced) DP-NeRF(RBK+AWP)

Figure 5. Rendered novel view synthesis results of DP-NeRF for real scene camera motion blur. Figures (a)-(e) denote Naive NeRF,
Deblur-NeRF, ours(RBK), ours(RBK+AWP), and ground truth images, respectively. Red colored box in corner of images are enlarged part
of same colored box region in reference images.



Defocus
Cake Caps Cisco Cupcake Coral

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF 24.42 .7210 .2250 22.73 .6312 .2801 20.72 .7217 .1256 21.88 .6809 .2155 19.81 .5658 .2689
Deblur-NeRF [2] 26.27 .7800 .1282 23.87 .7128 .1612 20.83 .7270 .0868 22.26 .7219 .1160 19.85 .5999 .1214

DP-NeRF 26.16 .7781 .1267 23.95 .7122 .1430 20.73 .7260 .0840 22.80 .7409 .0960 20.11 .6107 .1178

Defocus
Cups Daisy Sausage Seal Tools Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 25.02 .7581 .2315 22.74 .6203 .2621 17.79 .4830 .2789 22.79 .6267 .2680 26.08 .8523 .1547 22.40 .6661 .2310
Deblur-NeRF [2] 26.21 .7987 .1271 23.52 .6870 .1208 18.01 .4998 .1796 26.04 .7773 .1048 27.81 .8949 .0610 23.46 .7199 .1207

DP-NeRF 26.75 .8136 .1035 23.79 .6971 .1075 18.35 .5443 .1473 25.95 .7779 .1026 28.07 .8980 .0539 23.67 .7299 .1082

Table 3. Quantitative results for the real scene defocus blur. Each color shading indicates the best and second-best result, respectively.

a) Naïve NeRF b) Deblur-NeRF c) DP-NeRF(RBK) e) Referenced) DP-NeRF(RBK+AWP)

Figure 6. Rendered novel view synthesis results of DP-NeRF for real scene defocus blur. Figures (a)-(e) denote Naive NeRF, Deblur-
NeRF, ours(RBK), ours(RBK+AWP), and ground truth images, respectively. Red colored box in corner of images are enlarged part of
same colored box region in reference images.
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Figure 7. RBK analysis on camera motion blur for real blurball scene. Figure (a) denotes visualization result of original and rigid
transformed camera origin and direction on given reference view, which is presented in Figure (h). Figures (b)-(f) denote rendered images
from given and transformed cameras in Figure (a). Figure (g) denotes a composited blurred image from Figures (b)-to-(f) with composition
weights to predict a reference image, Figure (h). Figures (g) and (h) are used in DP-NeRF as RGB reconstruction loss.
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Figure 8. RBK analysis on defocus blur for real defocusseal scene. Figure (a) denotes visualization result of original and rigid transformed
camera origin and direction on given reference view, which is presented in Figure (h). Figures (b)-(f) denote rendered images from camera
and transformed cameras in Figure (a). Figure (g) denotes a composited blurred image from Figures (b)-(f) with composition weights to
predict a reference image, Figure (h). Figure (g) and (h) are used in DP-NeRF as RGB reconstruction loss.



Camera Motion
Factory Cozyroom Pool Tanabata Trolley Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 19.32 .4563 .5304 25.66 .7941 .2288 30.45 .8354 .1932 22.22 .6807 .3653 21.25 .6370 .3633 23.78 .6807 .3362
DP-NeRF(RBK) 25.82 .7853 .2493 32.75 .9331 .0351 31.98 .8756 .0925 27.63 .8745 .1045 27.93 .8723 .1130 29.22 .8682 .1189

DP-NeRF(RBK+AWP) 25.91 .7787 .2494 32.65 .9317 .0355 31.96 .8768 .0908 27.61 .8748 .1033 28.03 .8752 .1129 29.23 .8674 .1184

Defocus
Factory Cozyroom Pool Tanabata Trolley Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 25.36 .7847 .2351 30.03 .8926 .0885 27.77 .7266 .3340 23.80 .7811 .2142 22.67 .7103 .2799 25.93 .7791 .2303
DP-NeRF(RBK) 28.56 .8672 .1052 32.00 .9207 .0410 31.18 .8482 .1577 26.51 .8586 .0802 26.00 .8277 .1200 28.85 .8645 .1008

DP-NeRF(RBK+AWP) 29.26 .8793 .1035 32.11 .9215 .0386 31.44 .8529 .1563 27.05 .8635 .0779 26.79 .8395 .1170 29.33 .8713 .0987

Table 4. Ablation study for the synthetic scene. Each color shading indicates the best and second-best result, respectively.

Camera Motion
Ball Basket Buick Coffee Decoration

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 24.08 .6237 .3992 23.72 .7086 .3223 21.59 .6325 .3502 26.48 .8064 .2896 22.39 .6609 .3633
DP-NeRF(RBK) 27.15 .7641 .2112 27.35 .8367 .1347 24.93 .7791 .1545 30.72 .8949 .1070 24.15 .7730 .1700

DP-NeRF(RBK+AWP): 27.20 .7652 .2088 27.74 .8455 .1294 25.70 .7922 .1405 31.19 .9049 .1002 24.31 .7811 .1639

Camera motion
Girl Heron Parterre Puppet Stair Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 20.07 .7075 .3196 20.50 .5217 .4129 23.14 .6201 .4046 22.09 .6093 .3389 22.87 .4561 .4868 22.69 .6347 .3687
DP-NeRF(RBK) 22.19 .7934 .1575 22.55 .6831 .1970 25.81 .7635 .1931 25.19 .7497 .1493 25.68 .6446 .1799 25.57 .7682 .1654

DP-NeRF(RBK+AWP) 23.33 .8139 .1498 22.88 .6930 .1914 25.86 .7665 .1900 25.25 .7536 .1505 25.59 .6349 .1772 25.91 .7751 .1602

Table 5. Ablation study for the real scene camera motion blur. Each color shading indicates the best and second-best result, respectively.

Defocus
Cake Caps Cisco Cupcake Coral

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 24.42 .7210 .2250 22.73 .6312 .2801 20.72 .7217 .1256 21.88 .6809 .2155 19.81 .5658 .2689
DP-NeRF(RBK) 25.80 .7704 .1251 23.72 .7003 .1486 20.68 .7232 .0889 22.51 .7331 .1003 20.02 .6052 .1183

DP-NeRF(RBK+AWP) 26.16 .7781 .1267 23.95 .7122 .1430 20.73 .7260 .0840 22.80 .7409 .0960 20.11 .6107 .1178

Defocus
Cups Daisy Sausage Seal Tools Average

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Naive NeRF [3] 25.02 .7581 .2315 22.74 .6203 .2621 17.79 .4830 .2789 22.79 .6267 .2680 26.08 .8523 .1547 22.40 .6661 .2310
DP-NeRF(RBK) 26.59 .8086 .1077 23.77 .6968 .1059 18.40 .5448 .1452 26.04 .7767 .0996 27.87 .8947 .0540 23.54 .7254 .1093

DP-NeRF(RBK+AWP) 26.75 .8136 .1035 23.79 .6971 .1075 18.35 .5443 .1473 25.95 .7779 .1026 28.07 .8980 .0539 23.67 .7299 .1082

Table 6. Ablation study for the real scene defocus blur. Each color shading indicates the best and second-best result, respectively.
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Figure 9. Training of DP-NeRF and Deblur-NeRF on Stair scene.

Model PSNR(↑) SSIM(↑) LPIPS(↓)

DP-NeRF(RBK) 24.93 .7791 .1545
DP-NeRF(RBK+AWP) 25.47 .7883 .1466

DP-NeRF(RBK+AWP+Coarse-to-Fine) 25.70 .7922 .1405

Table 7. Ablation of coarse-to-fine optimization on Buick scene.

C.3. Ablation of Coarse to Fine Optimization

We present the optimization graph for Deblur-NeRF [2]
and DP-NeRF in Figure 9. Though it seems to be harder
to optimize the DP-NeRF due to higher degree of freedom,
DP-NeRF converges more faster than Deblur-NeRF thanks
to the shared rigid motions in a single view, which works as
regularization to optimize the RBK. In addition, we attach
ablation results of the coarse-to-fine optimization in Table 7.
It reveals that the proposed optimization scheme helps the
model to take the full advantage of AWP and improves the
visual quality. The time required to train 200000 iterations
are around 9.5 hours for Deblur-NeRF and 19 hours for
DP-NeRF on two NVIDIA RTX 3090 GPUs. Note that, we
present representative scenes for Figure 9 and Table 7 due
to time limitation to experiment on all scenes.

C.4. Ablation of the Number of Rigid Motions

We present the quantitative and qualitative results for the
ablation analysis of the number of rigid motions in Table 8
and Figures 10 and 11. As we mentioned, LPIPS represents
perceptual quality better than PSNR and SSIM do. Based
on this metric, the perceptual quality of DP-NERF gradu-
ally improves as the number of rigid motions increases. In
addition, DP-NeRF exhibits higher perceptual quality than
Deblur-NeRF [2] in terms of LPIPS for the same number
of composition rays. Furthermore, RBK+AWP produces a
better performance than does the RBK alone.

C.5. Visualization of Rigid Transformed Rays

We present additional visualization of rigid transformed
rays predicted by the RBK for a specific view. Figure 12 and
13 show the transformed rays according to the change of the
number of rigid motions k for camera motion and defocus
blur, respectively. The rays colored as orange are original

center rays in all visualization, which are forwarded to RBK
to generate the other rigidly warped rays in both Figure 12
and 13. They demonstrate that RBK successfully model the
camera shaking and virtual aperture for camera motion and
defocus blur, respectively.

C.6. Additional Error Map Visualization

As mentioned in the main paper, we present a full error
map visualization without the emphasis box in Figure 14.
Note that, brighter colors indicate greater error. We control
the brightness and contrast in all output identically, to re-
veal the error between the models more prominently. Our
model produces less error than the baselines for the images
regardless of the blur type.

D. Supplementary Video
We attach videos outlining novel view synthesis. These

videos are generated with spiral-path camera poses, which
are widely used for visual comparison in NeRF-based re-
search. Please watch theses supplementary videos or visit
out project page to observe the qualitative effectiveness of
DP-NERF.



Camera Motion - Pool Defocus - Pool

# of RM
DeblurNeRF DP-NeRF(RBK) DP-NeRF(RBK+AWP) DeblurNeRF DP-NeRF(RBK) DP-NeRF(RBK+AWP)

PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓) PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)PSNR(↑)SSIM(↑)LPIPS(↓)
2 31.48 .8658 .1348 31.97 .8741 .1102 32.30 .8822 .1031 29.89 .8087 .2280 30.24 .8246 .2023 30.52 .8301 .1971
3 31.52 .8670 .1289 31.61 .8682 .1032 31.80 .8709 .0966 30.07 .8117 .2094 29.22 .7923 .1891 29.39 .8006 .1871
4 31.49 .8672 .1257 31.98 .8756 .0925 31.96 .8768 .0908 30.43 .8230 .1931 31.18 .8482 .1577 31.44 .8529 .1563
5 31.59 .8710 .1169 31.40 .8671 .0912 31.88 .8763 .0849 30.52 .8244 .1832 30.99 .8421 .1485 31.07 .8473 .1484
6 31.59 .8688 .1149 31.43 .8662 .0868 31.74 .8733 .0807 30.70 .8310 .1712 31.42 .8549 .1368 31.73 .8621 .1362
7 31.42 .8628 .1121 31.65 .8699 .0851 31.67 .8714 .0806 30.73 .8317 .1728 31.15 .8484 .1328 31.62 .8589 .1302
8 31.56 .8685 .1097 31.49 .8683 .0840 31.49 .8668 .0796 30.92 .8352 .1625 31.37 .8532 .1267 31.77 .8609 .1234

Table 8. Quantitative results for ablation study of the number of rigid motions in the main paper, which is denoted as RM in the table.
Each color shading indicates best and second-best result on each scene with each model, respectively. Note that, the number of kernel
points in Deblur-NeRF is set to (the number of rigid motions + 1) for fair comparison, which means the same number of composition rays
to create a blurred color for a pixel.
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Figure 10. Qualitative results of ablation study depending on the number of rigid motion on camera motion blur scene. k denotes the
number of rigid motion. Each row denotes Deblur-NeRF, DP-NeRF(RBK) and DP-NeRF(RBK+AWP), respectively. Red colored box in
corner of images are enlarged part of same colored box region in reference images.
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Figure 11. Qualitative results of ablation study depending on the number of rigid motion on defocus blur scene. k denotes the number of
rigid motion. Each row denotes Deblur-NeRF, DP-NeRF(RBK) and DP-NeRF(RBK+AWP), respectively. Red colored box in corner of
images are enlarged part of same colored box region in reference images.
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Figure 12. Visualization of warped poses using rigid motions predicted by the RBK according to the change of the number of rigid motion
k on camera motion blur.
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Figure 13. Visualization of warped poses using rigid motions predicted by the RBK according to the change of the number of rigid motion
k on defocus blur.
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Figure 14. Full error map visualization on defocus Factory and camera motion Trolley scene. In addition, we denote quantitative quality
between reference and rendered images as average MSE(Mean Squared Error), denoted as green text on left bottom of each images.
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