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A. Evaluation protocol
Comparison with unconditional GANs based method.
We adopt Fréchet Inception Distance (FID) [3] and Ker-
nel Inception Distance (KID) [1] to measure the generation
quality and diversity of generated images. FID and KID
are computed between 50K generated images and the entire
training samples. We use a modified version of Perceptual
Smoothness (PS) [12] to measure the smoothness of inter-
polation between different domain features. Instead of the
style code which is used in the original paper [12], we use
z ∈ Z for target interpolation latent. Note that this modi-
fication is due to the architectural difference. Same as FID
and KID, 50K samples are used to compute PS. In order
to ensure that the implementation difference does not affect
performance, we compare all methods above the official Py-
torch [13] implementation of StyleGAN2-ADA1 [6].
Comparison on domain translation method. We use FID
and KID to evaluate generated images. 20K images are
randomly sampled from the source domain. For our ap-
proach, we project source domain images to z ∈ Z and pro-
vide them to the target model. For the other domain trans-
lation methods, source domain images and corresponding
randomly sampled style latent codes are used to generate
images. Note that 20K generated images and the entire tar-
get domain images are used for evaluation.

B. Additional results
Evaluation on anchor point nanch. We evaluate the pro-
posed method using different anchor points in FFHQ →
Metfaces setting. We train our model from scratch 10 times
and report Perceptual Smoothness (PS) [12], FID [3], and
KID [1] in Table 1. The anchor point nanch is randomly
sampled from the Gaussian distribution for each experi-
ment.
Noise interplation. We provide additional noise interpola-

1https : / / github . com / NVlabs / stylegan2 - ada -
pytorch

tion results of the proposed method on FFHQ → MetFaces
(Figure 2), FFHQ → AAHQ (Figure 3) and LSUN Church
→ WikiArt Cityscape (Figure 4).

Setting FFHQ → MetFaces

α PS FID KID
(×103)

1
0.884 ± 0.04

38.69 ± 3.23 14.36 ± 1.93
0 20.08 ± 0.30 3.54 ± 0.37

Table 1. Experiment on different anchor point nanch. We report
the mean and standard deviation of metrics over 10 runs.

Comparison with unconditional GANs based method.
An additional qualitative comparison of controlling pre-
served source features is shown in Figure 5, 6, and 7.
Freeze G [11] that requires new training for each source
degree shows an inconsistent transition of the preserved
source features. Layer-swap [14] and UI2I StyleGAN2 [10]
that convert weights of a source model also show the incon-
sistent transition. Specifically, unnatural color transitions
from the source domain are observed in Figure 5. Addi-
tionally, several artifacts and changes in the human identity
are observed in Figure 6. We believe that this phenomenon
occurs due to the long training time of the target model
(e.g. FFHQ → AAHQ are trained for 12000K images). The
long training time causes more changes in the target model
weights, and this may disturb the combined models to gen-
erate realistic images. For example, the identity changes
seen in the result of layer swap (Figure 6) seem to be caused
by a large change in the mapping function that transforms
z ∈ Z to w ∈ W . The color transition problems and in-
consistent transition are less observable in LSUN Church
→ WikiArt Cityscape, due to the artistic target dataset and
the spatial difference between the source and target domain,
respectively. Nevertheless, these methods require models
for each degree of preserved source features, while the pro-
posed method can control in a single model.
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Source Ours (α = 0)Ours (α = 1)Projected

Figure 1. Domain translation results for Church → Cityscape. In-
correctly projected images cause our method to generate uncorre-
lated target images with source.

Comparison on domain translation method. An ad-
ditional qualitative comparison of controlling preserved
source features are shown in Figure 11, 12. The latent
inversion method is only used for our approach. Modi-
fied version of the inversion method in StyleGAN2 [8] is
used. We embed real images into the Z space of the source
model with truncation psi of 0.7 following StyleAlign [17].
In the comparison, we use the exact same latent code ob-
tained by the inversion method for the target model. How-
ever, please note that our method can also be multimodal
like MUNIT [4] and StarGAN-v2 [2] by combining early
latent code from the projected latent code with the late la-
tent code from the others [17].
Latent inversion failure cases. Projecting images into
the Z space of the StyleGAN often fails to accurately re-
construct original images when the dataset becomes larger
and more diverse. The inversion and translated results on
Church → Cityscape are shown in Figure 13. The result
shows a strong correlation between projected and translated
images. However, the incorrectly acquired latent codes lead
to uncorrelated target domain images. It would be interest-
ing to integrate our method well with the inversion method
for other spaces (e.g. Z+,W , and W+), or to improve the
performance of the inversion method for Z space.

C. Latent modulation

Recently, several works [5, 15, 16] observe that Style-
GAN can effectively adjust semantic attributes of images
by modulating latent codes in interpretable directions. Ad-
ditionally, StyleSpace [16] revealed that the S space is the
most disentangled among the three latent spaces Z , W , and
S of StyleGAN [8, 9], and it is possible to change various
semantic attributes of generated images just by adjusting a
value of the single dimension of S . Based on this observa-
tion, we examine latent modulation effects on our proposed
method. The latent modulation effects on different interpo-

lation weights are shown in Figure 8, 9, and 10. The latent
modulation effects of the source model are highly aligned
in anchored subspace (α = 1). As α decreases, some latent
modulation effects remain, while the rest gradually weak-
ens or disappears. This phenomenon may occur as the pre-
served source features gradually vanish.

D. Comparison with SmoothingLatentSpace

Our approach allows smooth interpolation between the
source and target features in the transfer-learned model.
We additionally compare our approach with Smooth-
ingLatentSpace [12] which tries to smooth the interpola-
tion between the source and target domain. For Smooth-
ingLatentSpace, We interpolate latent codes from source
images ss and randomly sampled noise srand, α · ss + (1−
α) · srand, and generate target images with content from
source images and interpolated latent codes. Figure 14 and
15 show interpolation results between the source and tar-
get features. The results show that SmoothingLatentSpace
frequently generates severe artifacts during the interpola-
tion between latent codes from source images and ran-
domly sampled noise. In addition, compared to our method,
SmoothingLatentSpace generates less smooth interpolation
results.

E. Limitations

Despite our method achieved compelling results, it is not
without limitations. Although our method is easily appli-
cable to StyleGAN 1 [8] and 2 [9], it is hard to directly
incorporate our method into architectures that do not con-
tain the noise input such as StyleGAN3 [7] which removed
the noise input to achieve equivariances. Second, inversion
methods for Z space cannot accurately reconstruct finer de-
tails of real images, which interferes with the consistency
between the source and target images in domain translation.
For example, the results in Figure 6 in the main paper show
slight changes in the face identity due to inaccurately ob-
tained latent codes. Additionally, this phenomenon is ex-
acerbated when the dataset becomes larger and more di-
verse. As shown in Figure 1, the latent inversion method
causes significant changes in overall reconstructed images
in LSUN church, which leads our method to generate target
images uncorrelated with source images. In the future, it
might be interesting to design inversion methods that over-
come the above issues.

F. Broader impact

Translating one image to other domains has received
tremendous attention from the community and has been
used in a variety of applications. In addition to generat-
ing various images from one image (multimodal), it is also



very important to determine how much of the source fea-
tures are preserved. For example, users may obtain results
in which the desired degree of characteristics is preserved
in the applications. As such, we see great potential for our
technology to be utilized in various applications.

However, since our method is based on data-driven gen-
erative modeling, it faces various ethical issues arising from
bias in the training data. For example, a target model
fine-tuned from a source model pre-trained on FFHQ tends
to generate more light-skinned images than dark-skinned
ones. In addition, the phenomenon of changing dark-
skinned images to light-colored skin was also observed. At
a time when data-driven modeling is getting a lot of atten-
tion, the community needs a lot of effort and discussion
about data bias.
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α = 1 α = 0.75 α = 0.5 α = 0.25 α = 0

Figure 2. [FFHQ → MetFaces] Visualizing the effects of the noise interpolation. The interpolation weight α is presented above each
column.
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Figure 3. [FFHQ → AAHQ] Visualizing the effects of the noise interpolation. The interpolation weight α is presented above each column.
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Figure 4. [Church → Cityscape] Visualizing the effects of the noise interpolation. The interpolation weight α is presented above each
column.
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Figure 5. [FFHQ → MetFaces] Qualitative comparison on controlling preserved source features: (a) Layer-swap [14], (b) UI2I Style-
GAN2 [10], (c) Freeze G [11], (d) ours. The interpolation weight α and swap / freeze layer i are presented above each column.
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Figure 6. [FFHQ → AAHQ] Qualitative comparison on controlling preserved source features: (a) Layer-swap [14], (b) UI2I StyleGAN2
[10], (c) Freeze G [11], (d) ours. The interpolation weight α and swap / freeze layer i are presented above each column.
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Figure 7. [Church → Cityscape] Qualitative comparison on controlling preserved source features: (a) Layer-swap [14], (b) UI2I Style-
GAN2 [10], (c) Freeze G [11], (d) ours. The interpolation weight α and swap / freeze layer i are presented above each column.
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Figure 8. [FFHQ → MetFaces] Visualizing the effects of the latent modulation on different interpolation weight. Each of the two adjacent
columns is the result of modulating the latent in a different direction (+/−). The interpolation weight α is presented above each column.
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Figure 9. [FFHQ → AAHQ] Visualizing the effects of the latent modulation on different interpolation weight. Each of the two adjacent
columns is the result of modulating the latent in a different direction (+/−). The interpolation weight α is presented above each column.
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Figure 10. [Church → Cityscape] Visualizing the effects of the latent modulation on different interpolation weight. Each of the two
adjacent columns is the result of modulating the latent in a different direction (+/−). The interpolation weight α is presented above each
column.



Ours (α = 0)Ours (α = 1)F-LSeSimStarGAN-v2 CUTMUNITUNITSource

Figure 11. [FFHQ → MetFaces] Qualitative comparison on domain translation. Our method is not only qualitatively best, but also can
control source features in a single model.
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Figure 12. [FFHQ → AAHQ] Qualitative comparison on domain translation. Our method is not only qualitatively best, but also can
control source features in a single model.
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Figure 13. Domain translation results for Church → Cityscape. Incorrectly projected images cause our method to generate uncorrelated
target images with source.
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Figure 14. [FFHQ → MetFaces] Qualitative comparison on interpolation between source and target features: (a) SmoothingLatentSpace
[12], (b) ours. The interpolation weight α is presented above each column.
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Figure 15. [FFHQ → AAHQ] Qualitative comparison on interpolation between source and target features: (a) SmoothingLatentSpace [12],
(b) ours. The interpolation weight α is presented above each column.


