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This supplementary material presents additional exper-
imental details and results that are omitted from the main
paper due to the space limit. Section A explains extremely
low-light images of the ExLPose dataset. Section B shows a
comparison of dataset scale with other human pose datasets.
Section C presents a detail of the geometric alignment
of our dual-camera system. Section D describes experi-
mental details about implementation (Sec. D.1) and net-
work architectures (Sec. D.2). Section E shows an in-
depth analysis of our method, including lighting condition
analysis (Sec. E.1), lighting condition insensitive features
analysis (Sec. E.2), and additional analysis for our method
(Sec. E.3). Section F shows detailed results of the various
combinations of the existing enhancement methods and the
pose estimation network. Section G gives extensive experi-
mental results to investigate the components of our method,
such as LSBN (Sec. G.1), LUPI (Sec. G.2, G.3, G.4), and
intensity scaling (Sec. G.5). Section H presents experimen-
tal results of person detection in extremely low-light condi-
tions. Finally, Section I shows additional qualitative results.

A. Explanation on Extremely Low-light Im-
ages

Low-light conditions are important as they are prevalent
in many scenarios with limited illumination, such as night-
time and low-light indoor environments. Capturing images
in such conditions is challenging due to the requirement
of a long exposure time, which can cause motion blur, a
thorny problem to solve. To avoid blur, a common prac-
tice is to utilize extremely low-light images captured with
a short exposure time for various tasks in low-light envi-
ronments, such as image enhancement [3,12,24,25], action
recognition [27], image matching [19], optical flow estima-
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tion [29]. In the case of human pose estimation, capturing
images with a long exposure time is impossible due to the
movement of humans. Thus, we study pose estimation un-
der extremely low-light conditions using an extremely low-
light image rather than images captured with long exposure.
The low-light images can be amplified to improve visibility
using global scaling, but noise is also amplified, resulting in
extremely noisy images. Fig. a1 shows low-light and scaled
images in the SID [3] and ExLPose datasets. The scaled im-
ages are extremely noisy since the scaling amplifies noise;
the degree of noise depends on that of darkness.

Well‐lit [ExLPose] Low‐light [ExLPose] Scaled [ExLPose]

Well‐lit [SID] Low‐light [SID] Scaled [SID]

Figure a1. Examples of well-lit, extremely low-light, and scaled
low-light images in the SID [3] and ExLPose datasets.

B. Scale Comparison to Other Datasets
We compare our dataset to existing human pose esti-

mation datasets. As shown in the Table a1, the scale of
our dataset is large enough since it is comparable to com-
mon datasets in terms of the number of annotated people as
shown in the table. Note that the unit of supervision in pose
estimation is a human instance, not an image.

Dataset Paired #Poses Multi-person

LSP [13] 2,000
LSP Extended [14] 10,000
MPII Single-person [1] 26,429
FLIC [18] 5,003

We are family [6] 3,131 ✓
OCHuman [28] 8,110 ✓
MPII Multi-person [1] 14,993 ✓
CrowdPose [16] 80,000 ✓
ExLPose (Ours) ✓ 14,214 ✓

Table a1. Statistics of the ExLPose and other datasets.

C. Geometric Alignment of Our Camera Sys-
tem

We physically align two camera modules of the dedi-
cated dual-camera system as much as possible to capture
images that are aligned with each other. Nevertheless, there

may exist a small amount of geometric misalignment be-
tween the cameras as discussed in [17]. Moreover, while
moving around the camera system collecting the dataset,
the movement of the camera system may introduce addi-
tional geometric misalignment.

To resolve this, we captured a reference image pair of a
static scene before collecting data every time we moved the
camera system, and estimated a homography between them.
We set the exposure time of the low-light camera module
100 times longer so that pairs of reference images have the
same brightness for accurate homography estimation. Then,
we estimated a homography matrix between them using the
method of [7] and aligned the collected well-lit images us-
ing the estimated homography matrix. Fig. a2(a)-(b) visual-
ize the effect of geometric alignment using stereo-anaglyph
images where a pair of well-lit and scaled low-light images
from the camera modules are visualized in red and cyan. As
the figure shows, even before the geometric alignment, im-
ages from our camera system have only a small amount of
misalignment. Nevertheless, the geometric alignment can
successfully resolve the remaining misalignment.

(a)

(b)

Figure a2. Stereo-anaglyph images (a) before and (b) after geo-
metric alignment.

D. Experimental Details
In this section, we present the implementation settings

and detailed network architectures that are omitted from the
main paper due to the space limit.

D.1. Implementation Details

Pose Estimation Network. The pose estimation network is
trained by the Adam optimizer [15] with a weight decay of
1e−5 and a learning rate set initially to 5e−4 and decreased
by a factor of 2 every six epochs. Each mini-batch consists
of 32 images from each lighting condition. Following Cas-
caded Pyramid Network (CPN) [4], each human box image



is cropped and resized to a fixed size, 256×192. Then we
apply random scale (0.7 ∼ 1.35) augmentation. During
training, we multiply a weight of 1e−3 to LLUPI.

Person Detection Network. The person detection net-
work, i.e. Cascade R-CNN [2] with ResNeXt101 [26] pre-
trained on ImageNet [5], is optimized by the SGD with a
momentum of 0.9, and a weight decay of 1e−4 within 12
epochs. The initial learning rate is set to 2e−3 for the de-
tection network, and it is decayed by a factor of 0.1 for the
eight and eleven epochs. For each lighting condition, the
mini-batch size is set to 2. All input images are resized to
a fixed size, 1333×800. Similar to the pose estimation net-
work, we multiply a weight of 1e−3 to LLUPI during train-
ing. In testing, duplicated detected boxes are filtered out by
Non-Maximum Suppression (NMS) with an IoU threshold
of 0.7.

D.2. Network Architectures

Fig. a3 and Fig. a4 depict the detailed architecture of hu-
man pose estimation and person detection, respectively.

Pose Estimation Network. For the human pose estimation
network, as shown in Fig. a3, we adopt CPN [4], involv-
ing two sub-networks of GlobalNet and RefineNet. Global-
Net is similar to the feature pyramid structure for key point
estimation. In GlobalNet, each feature from four residual
blocks (i.e., R1-R4) is applied 1×1 convolutional kernel and
then element-wise summed. Then, RefineNet concatenates
all the features from GlobalNet. For GlobalNet and Re-
fineNet, the pose estimation losses are applied to the output
feature of each sub-network, where we denote Lglobal and
Lrefine for them, respectively. As mentioned Sec. 5.1 in the
main paper, LUPI is applied to the feature maps of the first
convolutional layer and the following four residual blocks
of a ResNet backbone. For more details on the pose estima-
tion network, please refer to the CPN [4] paper.

Person Detection Network. We utilize Cascade R-
CNN [2] as the person detection network. In Fig. a4, teacher
and student networks are trained by the common detection
losses for classification and regression, denoted as Lcls and
Lreg, respectively. We first try applying LUPI on the feature
maps of the first convolutional layer and the four residual
blocks following our experimental setting in human pose
estimation. However, we found that applying LUPI on the
output features from the feature pyramid network is more
effective than applying the loss on the features from residual
blocks. Therefore, as presented in the figure, we finally ap-
ply LUPI on the feature maps of the first convolutional layer
and the following feature pyramid network. More detailed
information for the person detection network is described in
the Cascade R-CNN [2] paper.

E. Empirical Analysis
E.1. Analysis on Lighting Conditions

Our method is based on the assumption that the neural
style encodes the lighting condition. In this section, we em-
pirically verify this assumption by visualizing the distribu-
tions of Gram matrices computed from low-light and well-
lit images. Their Gram matrices are computed at 1st, 2nd,
3rd, and 4th Res Blocks of ResNet-50 [10] pre-trained on
the ImageNet dataset [5]. Fig. a5 shows t-SNE [20] visual-
ization of Gram matrices. In the figure, we can observe that
images of the same lighting condition are grouped together
in the style spaces, which validates our assumption.

E.2. Qualitative Analysis on Lighting Condition In-
sensitive Features

We conduct an experiment to investigate the impact
of lighting condition insensitive features learned by our
method. To this end, we train an image reconstruction
model composed of a backbone of CPN as an encoder and
a decoder which consists of transposed convolution layers
on the well-lit image of the ExLPose dataset. Then, we re-
place the encoder of the reconstruction model with that of
the pose estimation model trained by our method. Fig. a6
shows the reconstructed results on well-lit and low-light im-
ages. The figure demonstrates that our model learns fea-
tures insensitive to lighting conditions in that reconstructed
images from well-lit and low-light are consistent results.

E.3. Additional Quantitative Analysis on Our
Method

In the main paper, we compare the average Hausdorff
distance [11] between sets of Gram matrices under differ-
ent lighting conditions. In this section, we show additional
results to investigate the style gaps between well-lit and
paired low-light images. To this end, we compute the mean
squared error (MSE) [23] distance on gram matrices be-
tween low-light and well-lit images of a pair before and af-
ter applying LUPI. Then, we report the average values for
the overall ExLPose dataset. Fig. a7 presents that the style
gaps between low-light and well-lit conditions are reduced
by LUPI.

F. Results of Various Applying Enhancement
Methods

F.1. Results on the ExLPose Dataset

In this section, we report the detailed results of adopting
existing enhancement methods. To this end, we first apply
enhancement methods on low-light images of the ExLPose
dataset as pre-processing. For the learning-based enhance-
ment method (i.e., LLFlow), we train the method using
paired low-light and well-lit images of the ExLPose dataset.
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Figure a3. Illustration of the detailed human pose estimation network architecture. Both of teacher (bottom) and student (top) are trained
by the same pose estimation loss of Lglobal and Lrefine from GlobalNet and RefineNet of CPN [4]. LUPI is applied to the feature maps of the
first convolutional layer (i.e., C1) and four residual blocks (i.e., R1-R4) of a ResNet backbone. Teacher and student share all the parameters
except LSBNs.
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Figure a4. The overall architecture of the person detection network and training strategy. Both of teacher (bottom) and student (top) are
trained by the same detection loss functions (Lcls and Lreg), and student takes additional supervision from teacher through LUPI. The loss
for LUPI is applied to the feature maps of the first convolutional layer (i.e., C1) and the following feature pyramid network (FPN) which
takes feature maps of four residual blocks (i.e., R1-R4) of a ResNet backbone as inputs. Teacher and student share all the parameters except
LSBNs. “Head”, “C”, and “B” denote roi head, object classification, and bounding box, respectively.
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Figure a5. t-SNE visualization of the distributions of Gram matrices computed from low-light and well-lit images. The Gram matrices are
computed from feature maps of the 1st, 2nd, 3rd, and 4th Res Blocks of ResNet-50 [10] pre-trained on the ImageNet dataset [5]. In all
the visualizations, images of the same lighting condition are clustered together, suggesting that neural styles in the form of Gram matrices
encode lighting conditions.

For the traditional enhancement method (i.e., LIME), we
apply the method on the low-light images of the ExL-
Pose dataset without the training process. The straightfor-
ward way to incorporate these enhancement modules with
a pose estimation network is to exploit the enhanced low-
light images as inputs to evaluate Baseline-well, which is
the pose estimation network trained using well-lit images
only. In Table a2, LLFlow + Baseline-well and LIME +
Baseline-well show the performance of pose estimation us-
ing LLFlow [22] and LIME [9] as pre-processing, respec-

tively. They achieve inferior performance since the en-
hancement module is optimized to enhance the quality of
low-light images but not to improve performance on the
downstream recognition models. To address this issue, we
train the pose estimation network using enhanced low-light
images, denoted by LLFlow + Baseline-low† and LIME +
Baseline-low†. The table shows that the pose estimation
network trained using enhanced low-light images performs
better. We also found that training both enhanced low-
light and well-lit images significantly improves the perfor-
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Figure a6. Input images and reconstructed images by the proposed method.
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Figure a7. Style gaps between low-light (LL) and well-lit (WL)
conditions. The gap is computed by averaging the mean squared
error (MSE) distance between low-light and paired well-lit images
on the ExLPose dataset.

mance. As presented in the table, LLFlow + Baseline-all†

and LIME + Baseline-all† show the pose estimation net-
work trained using both enhanced low-light and well-lit im-
ages achieves the best performance among other variants.
Our method outperforms all variants of adopting enhance-
ment methods regardless of their training strategy.

AP@0.5:0.95 LL-N LL-H LL-E LL-A WL

Baseline-well 23.5 7.5 1.1 11.5 68.8
Baseline-low 32.6 25.1 13.8 24.6 1.6
Baseline-all 33.8 25.4 14.3 25.4 57.9

LLFlow + Baseline-well 22.9 11.7 2.4 12.8 -
LLFlow + Baseline-low† 30.7 18.4 8.0 19.6 40.9
LLFlow + Baseline-all† 35.2 20.1 8.3 22.1 65.1

LIME + Baseline-well 23.1 5.8 1.0 10.8 -
LIME + Baseline-low† 31.6 24.3 12.6 23.6 36.2
LIME + Baseline-all† 40.6 27.1 13.4 28.3 63.2

Ours 42.3 34.0 18.5 32.7 68.5

Table a2. Quantitative results in AP@0.5:0.95 on the ExLPose
dataset; Low-light-normal, Low-light-hard, Low-light-extreme,
Low-light-all, Well-lit splits. Baseline-low† is a model trained us-
ing enhanced low-light images, and Baseline-all† denotes a model
trained using both enhanced low-light and well-lit images.

F.2. Results on the ExLPose-OCN Dataset

We also evaluate each combination of enhancement and
pose estimation methods in Sec. F.1 on the ExLPose-OCN
dataset. Table a3 shows that the tendency of each model
is similar to that of each model in Table a2. In detail, a
trained pose estimation model using both enhanced low-
light and well-lit images (i.e., LLFlow + Baseline-all† and
LIME + Baseline-all†) outperforms the variants of them.
Our method is still superior to all variants of the combi-
nations of enhancement and pose estimation methods.

G. Additional Ablation Studies

G.1. Effect of LSBN

This section presents extensive experiments to investi-
gate the effect of LSBN. As mentioned Sec. 5.1.1 in the



AP@0.5:0.95 A7M3 RICOH3 Avg.

Baseline-well 23.7 23.9 23.8
Baseline-low 15.2 15.6 15.4
Baseline-all 32.8 31.7 32.2

LLFlow + Baseline-well 30.4 24.5 27.3
LLFlow + Baseline-low† 20.5 18.7 19.5
LLFlow + Baseline-all† 25.6 28.2 27.0

LIME + Baseline-well 10.9 7.9 9.3
LIME + Baseline-low† 20.7 13.4 16.8
LIME + Baseline-all† 33.2 28.4 30.7

Ours 35.3 35.1 35.2

Table a3. Quantitative results in AP@0.5:0.95 on the ExLPose-
OC dataset; A7M3, and RICOH3 splits. Baseline-low† is a model
trained using enhanced low-light images, and Baseline-all† de-
notes a model trained using both enhanced low-light and well-lit
images.

main paper, domain adaptation (DA) methods cannot effec-
tively reduce the large domain gap between low-light and
well-lit conditions. As presented in Table a4, DANN [8],
AdvEnt [21], and LUPI show inferior performance, prov-
ing the necessity of LSBN. When they are combined with
LSBN, the performance of each method is improved since
it successfully bridges the large domain discrepancy be-
tween low-light and well-lit conditions. When compared
with ‘LSBN + DANN’ and ‘LSBN + AdvEnt’, our method
(i.e., ‘LSBN + LUPI’) outperforms them thanks to the ef-
fectiveness of our neural style-based approach, LUPI. It is
worth noting that our method can be a plug-and-play to the
feature extractor, while AdvEnt is hard to apply to the task
where the entropy map cannot be computed.

AP@0.5:0.95 LL-N LL-H LL-E LL-A WL

DANN 34.9 24.9 13.3 25.4 58.6
AdvEnt 33.0 24.1 11.6 23.8 60.0
LUPI 34.2 23.1 11.2 24.0 61.7

LSBN + DANN 42.2 30.5 16.7 30.8 67.4
LSBN + AdvEnt 41.3 31.2 19.0 31.5 68.5
LSBN + LUPI (Ours) 42.3 34.0 18.5 32.7 68.5

Table a4. Analysis for the effect of LSBN. The results are reported
in AP@0.5:0.95 on the ExLPose dataset; Low-light-normal, Low-
light-hard, Low-light-extreme, Low-light-all, and Well-lit condi-
tions.

G.2. Effect of the Neural Style of LUPI

We investigate the effect of LUPI by comparing LSBN
+ LUPI (i.e., our method) with LSBN + LUPI-feat that di-
rectly approximates feature maps of the teacher instead neu-
ral styles. We conduct an in-depth analysis by comparing

them in terms of the feature gaps between low-light and
well-lit conditions. As presented in Fig. a8, LSBN + LUPI
effectively reduces the average Hausdorff distance of fea-
ture maps between different lighting conditions, although
LSBN + LUPI-feat directly approximates the feature maps
of well-lit images. We conjecture that the advantage of us-
ing neural styles over directly using features comes from
the less image-dependent characteristic of neural styles, i.e.,
features are more image-specific information that changes
with each image; thus it is more difficult for LSBN + LUPI-
feat to reduce the difference between features. In conse-
quence, LSBN + LUPI effectively aligns the feature dis-
tributions of different lighting conditions since they aim to
approximate the styles which represent the characteristics
of lighting conditions.
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Figure a8. Quantitative analysis on feature distribution gap be-
tween low-light (LL) and well-lit (WL) conditions. The distance
is measured by the average Hausdorff distance between lighting
condition sets.

G.3. Effect of Layer Selection of LUPI

We investigate the impact of the selection of layers where
LUPI is applied. Table a5 compares different choices for
the layer selection. In the table, C1 applies LUPI to the
output of the first convolutional layer, and C1:Rn applies
LUPI to the 1st to the n-th residual blocks as well as the first
convolution layer. As shown in the table, the performance
improves as LUPI is applied to more blocks, and our final
model (C1:R4) achieves the best performance.



AP@0.5:0.95 LL-N LL-H LL-E LL-A WL

C1 41.0 30.0 15.0 29.7 67.6
C1:R1 40.8 30.0 17.0 30.3 67.1
C1:R2 42.2 30.6 15.8 30.7 67.9
C1:R3 43.1 32.2 17.7 32.2 67.9
Ours (C1:R4) 42.3 34.0 18.5 32.7 68.5

Table a5. Analysis on layers where LUPI is applied.

G.4. Effect of the Gradient Direction of LUPI

When training with LUPI, we let the gradient from the
loss flow only to the student in order to train the student
with privileged information from the teacher, i.e., informa-
tion flows in one direction from the teacher to the student. In
this section, we study the effect of this one-direction strat-
egy on LUPI. To this end, we prepare three variants of our
approach: ‘T→ S (Ours)’, ‘T↔ S’ and ‘T← S’. ‘T→ S
(Ours)’ is our proposed approach. ‘T↔ S’ allows the gradi-
ent from LUPI to flow to both the teacher and student mod-
els, i.e., the teacher and student can affect each other. ‘T←
S’, on the other hand, allows the gradient to flow only to the
teacher. Table a6 compares the performance of these three
variants. As shown in the table, our approach clearly out-
performs the others. This result implies our one-direction
strategy is essential for learning about LUPI.

AP@0.5:0.95 LL-N LL-H LL-E LL-A WL

T↔ S 41.6 32.8 16.7 31.6 67.0
T← S 39.7 29.6 15.7 29.5 68.4
T→ S (Ours) 42.3 34.0 18.5 32.7 68.5

Table a6. Analysis on the impact of the gradient direction from
LUPI.

G.5. Effect of Intensity Scaling

As described in the main paper, the average channel in-
tensity of each low-light image is automatically scaled to
0.4 before being fed to the student network. Table a7 shows
the performance of Baseline-all and the proposed method
trained on original low-light images and scaled low-light
images. In low-light conditions, automatically scaled low-
light images significantly improve the performance of both
models. However, Baseline-all trained on the scaled low-
light images performs much worse in well-lit conditions.

We suspect that, in the case of using original low-light
images, the Baseline-all model is biased to the well-lit con-
dition. It is because well-lit images have large pixel inten-
sities, so the scale of gradient of them is larger than that of
original low-light images. Then, in the case of using scaled
low-light images, the Baseline-all model is less biased for
the well-lit condition, so the performance on the well-lit

condition is decreased. However, the proposed method is
less biased due to the lighting condition invariant features
of LSBN and LUPI. Consequently, Table a7 demonstrates
that intensity scaling of low-light images improves the per-
formance of both Baseline-all and our method for low-light
conditions.

AP@0.5:0.95 Method LL-N LL-H LL-E LL-A WL

No scaling Baseline-all 22.3 6.5 2.5 11.2 61.3
Ours 25.5 10.0 5.9 14.5 67.1

Scaling Baseline-all 33.8 25.4 14.3 25.4 57.9
Ours 42.3 34.0 18.5 32.7 68.5

Table a7. Analysis on impact of scaling for low-light images.

H. Results of Person Detection
The ExLPose dataset provides human pose and bound-

ing box labels for training and evaluation of human pose es-
timation methods. Moreover, human bounding boxes in the
ExLPose dataset can serve as a detection dataset on low-
light images.We adopt Cascade R-CNN [2] as our person
detection network and compare our method with other so-
lutions in the same way as described in the main paper.

Table a8 shows summarized the person detection perfor-
mance of ours and other solutions. In the table, Baseline-all
is a Cascade R-CNN trained on both low-light and well-
lit images with person detection loss only, and Baseline-all
still underperforms our method. For comparing other solu-
tions, we adopt LLFlow and LIME for enhancement meth-
ods and DANN for domain adaptation. AdvEnt cannot be
applied to the person detection task as the method is based
on the entropy minimization of prediction. Accordingly, we
did not conduct experiments about AdvEnt on person detec-
tion. As shown in the table, these methods rather degrade
performance in low-light conditions as a direct adoption of
enhancement and domain adaptation is not effective. On
the other hand, our method outperforms by large margins in
all the low-light conditions, and the results show the effec-
tiveness of our method for person detection in the low-light
condition.

AP@0.5:0.95 LL-N LL-H LL-E LL-A WL

Baseline-low 39.8 30.5 17.4 30.2 40.7
Baseline-well 22.6 3.8 0.5 9.7 53.2
Baseline-all 44.9 32.3 18.3 33.0 60.8

LLFlow + Baseline-all 38.3 29.0 15.2 28.4 61.3
LIME + Baseline-all 45.8 32.1 17.0 32.8 63.5

DANN 43.7 30.1 14.8 30.7 55.7

Ours 46.2 34.5 21.0 34.9 60.9

Table a8. Person detection results in AP@0.5:0.95 on the ExLPose
dataset; Low-light-normal, Low-light-hard, Low-light-extreme,
Low-light-all, and Well-lit conditions.



I. Additional Qualitative Results
I.1. Results on the ExLPose-OCN Dataset
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Figure a9. Qualitative results on the ExLPose-OCN dataset. Pre-
dicted poses and labels are visualized on corresponding low-light
images. (a) Scaled low-light images. (b) Baseline-all. (c) DANN.
(d) LIME + Baseline-all. (e) Ours. (f) Ground-truth.

We provide the ExLPose-OCN dataset to evaluate the
generalization capability of pose estimation methods to un-
seen cameras. Fig. a9 shows qualitative comparisons of our
method with Baseline-all, DANN, and LIME + Baseline-all
on the ExLPose-OCN dataset. As shown in the figure, our
method accurately estimates human poses, but other meth-
ods do not generalize well to unseen cameras and often fail
to estimate accurate human poses.

I.2. Results on the ExLPose Dataset

Fig. a10 shows additional qualitative results of Baseline-
all, DANN [8], LIME [9] + Baseline-all and our method.

This again demonstrates that Baseline-all and DANN often
fail to predict poses, while our method surpasses them.

I.3. Failure Cases of Our Method

We provide failure cases of our method in Fig. a11. The
first row of the figure shows the results of the pose estima-
tion network on low-light images which have little pixel in-
formation. In such images, noise components are prevalent,
and the remaining pixel information is too small to estimate
human poses. Our method also fails to predict human poses
for occluded humans, as shown second and third rows in the
figure.

I.4. Results of Enhancement Methods

Fig. a12 shows enhanced low-light images of the ExL-
Pose and ExLPose-OCN datasets using LLFlow [22] and
LIME [9]. For the ExLPose dataset, LLFlow successfully
enhances low-light images and reduces the noises of low-
light images. However, LLFlow cannot generalize well to
the ExLPose-OCN dataset due to different image signal pro-
cessors and exhibit different noise distributions. Enhanced
low-light images using LIME have the remaining noise as
the method does not consider noise well. These limitations
may reduce the generalization capability and performance
of the pose estimation when enhancement methods are com-
bined with the pose estimation network.

I.5. Results of Multi-person Pose Estimation

Fig. a13 presents qualitative results for the person detec-
tion of Baseline-all, DANN, LIME + Baseline-all, and our
method. These predicted bounding boxes of our method are
exploited for multi-person pose estimation; its qualitative
results are shown in Fig. a14. The figure shows that our
method successfully performs multi-person pose estimation
while other solutions largely fail to estimate human poses.
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Figure a10. Qualitative results of single-person pose estimation on the ExLPose dataset. Predicted poses and labels are visualized on
corresponding low-light images. (a) Scaled low-light images. (b) Baseline-all. (c) DANN. (d) LIME + Baseline-all. (e) Ours. (f) Ground-
truth.
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Figure a11. Failure cases of our method. (a) Low-light images. (b) Scaled low-light images. (c) Our results. (d) Ground-truth.

Ex
LP
os
e-
O
CN

Ex
LP
os
e

(a) (b) (c) (d)
Figure a12. Qualitative results of enhanced low-light images on the ExLPose and ExLPose-OCN datasets. We except well-lit images of
the ExLPose-OCN dataset as the dataset provides only low-light images. (a) Low-light images. (b) LLFlow. (c) LIME. (d) Well-lit images.
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Figure a13. Qualitative results for the person detection on the ExLPose dataset. Predicted boxes and labels are visualized on corresponding
low-light images. (a) Scaled low-light images. (b) Baseline-all. (c) DANN. (d) LIME + Baseline-all. (e) Ours. (f) Ground-truth.
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Figure a14. Qualitative results for multi-person pose estimation on the ExLPose dataset. Predicted poses and labels are visualized on
corresponding low-light images. (a) Scaled low-light images. (b) Baseline-all. (c) DANN. (d) LIME + Baseline-all. (e) Ours. (f) Ground-
truth.
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