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In this supplementary document, we first show more
qualitative results of our method in Section S.1. We then
show the results of our additional ablation study in Sec-
tion S.2. Finally, we report our implementation details and
experimental details in Section S.3 and S.4, respectively.

S.1. Additional Qualitative Results

S.1.1 Video Results

We provide the video results (https://youtu.be/
3yNGSRz564A) of our method on image-based two-hand
reconstruction in comparison to HALO [7] and Intag-
Hand [9]. This video contains the reconstruction results
on InterHand2.6M [11] test image sequences that are used
in the main experiments in the paper. For our method and
HALO, we use DIGIT [4] to generate keypoint inputs from
single images. Please note that our method and the base-
line methods [7,9] are originally proposed for two-hand re-
construction from single images and/or keypoints, thus the
shapes were reconstructed from each frame independently.
One important future research direction would be to extend
our model to additionally utilize temporal information for
tracking applications.

S.1.2 Ablation Study
In Figure S1, we show the qualitative examples of our ab-
lation study in Table 4 in the main paper. The shown ex-
amples are produced from single images, where we use the
keypoints predicted by DIGIT [4] as inputs. In the figure,
I produces two-hand shapes that do not look plausible due
to the input errors from the predicted two-hand keypoints.
K + I generates more plausible shapes through input key-
point refinement performed by K, however, it still does not
properly model hand-to-hand interactions (e.g., finger con-
tacts). Our full model, K + I +R, reconstructs the most
accurate shapes with higher hand-to-image and hand-to-
hand coherency.

S.1.3 Additional Qualitative Comparison
In Figure S2 (please see the next page), we also show the
additional examples of our qualitative comparison of in-

teracting two-hand reconstruction on InterHand2.6M [11].
Compared to HALO [7] and IntagHand [9], Im2Hands can
reconstruct interacting two-hand shapes with a higher res-
olution, less penetrations, and better hand-to-image and
hand-to-hand alignments. The shown examples were pro-
duced from single image inputs to perform a fair compar-
ison with IntagHand, where our method and HALO again
leveraged DIGIT [4] as a keypoint estimator.
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Figure S1. Qualitative examples of ablation study on Inter-
Hand2.6M [11]. I, R and K denotes Initial Hand Occupancy
Network, Two-Hand Occupancy Refinement Network, and Input
Keypoint Refinement Network, respectively.

https://youtu.be/3yNGSRz564A
https://youtu.be/3yNGSRz564A


Input HALO [7] IntagHand [9] Im2Hands (Ours)
Org. view Alt. view Org. view Alt. view Org. view Alt. view

17480

19250

21760

21990

22910

32000

143080

143120

151340

Figure S2. Additional qualitative examples of image-based interacting two-hand reconstruction on InterHand2.6M [11]. We com-
pare the results of our method with HALO [7] and IntagHand [9]. Green boxes show penetrations, brown boxes show non-smooth shapes,
and purple boxes show shapes with bad image alignment. Our method produces two-hand shapes with better hand-to-image and hand-
to-hand coherency, less penetrations, and a higher resolution.



S.2. Additional Ablation Study

We now report the quantitative results of more detailed
ablation study. In what follows, we first explain the nota-
tions for each of the evaluated variations of Im2Hands.

• I − ImageCond denotes a variation where no im-
age conditioning is used in I, resulting in a model
equivalent to HALO [8].

• I − QueryImageAtt denotes a variation where no
query-image attention is used in I. Instead, pixel-
aligned features (e.g., PIFu [12]) are used to condition
our initial occupancy on an input image.

• I + R − InitOccCond denotes a variation where
the initial occupancy probability estimated by I is not
used to condition our two-hand refined occupancy es-
timation in R.

• I + R − FeatureCloud denotes a variation where
the feature cloud conversion is not performed in R.

• I + R − ContextLatent denotes a variation
where the context latent extraction is not performed
in R. Instead, global latent vector of each hand point
cloud is used in the refined occupancy estimation.

Detailed Ablation Study With Ground Truth Keypoints.
In Table S1, our quantitative results across the variations of
Im2Hands are shown. Note that the ground truth keypoint
inputs are used in these experiments. Our results demon-
strate that each of the proposed model components con-
tributes to more accurate two-hand shape estimation, and
thus the proposed full model achieves the best performance.

Table S1. Results of detailed ablation study using the ground
truth 3D hand keypoints. Experiments are performed on Inter-
Hand2.6M [11] dataset.

Method IoU (%) ↑ CD (mm) ↓

I − ImageCond 74.7 2.62
I - QueryImageAtt 75.8 2.51

I 77.2 2.32

I + R - InitOccCond 67.0 3.44
I + R - FeatureCloud 77.4 2.32
I + R - ContextLatent 77.6 2.31

Im2Hands (I + R) 77.8 2.30

Detailed Ablation Study With Predicted Keypoints. In
Table S2, we additionally show our results using the key-
points predicted by DIGIT [4] to examine the effectiveness
of each of our components on more various settings. In
the table, our full model is again shown to achieve the best
performance. Considering the ablation study results using

the ground truth (Table S1) and predicted (Table S2) key-
points together, one interesting observation is that I con-
tributes more to the performance improvement when using
the ground truth keypoints input, while R contributes more
to it when using the predicted keypoints input. It reveals
that both I and R are essential to enable robust two-hand
shape reconstruction given input keypoints with various de-
grees of noise.

Table S2. Results of detailed ablation study using the 3D hand
keypoints predicted by DIGIT [4]. Experiments are performed
on InterHand2.6M [11] dataset.

Method IoU (%) ↑ CD (mm) ↓

K+ I − ImageCond 53.0 5.63
K+ I - QueryImageAtt 53.9 5.47

K+ I 55.4 5.36

K+ I + R - InitOccCond 55.1 5.18
K+ I + R - FeatureCloud 58.3 4.78
K+ I + R - ContextLatent 58.4 4.79

Im2Hands (K+ I + R) 59.4 4.75

Different Point Sampling Densities. For our two-hand oc-
cupancy refinement, we represent each initial hand shape
with 512 farthest points on the surface. In Table S3, we
also show the results with different point sampling densi-
ties. Our model performance (in IoU) is not affected much
by the point density, while the training time is reduced when
the number of points is decreased – showing the effective-
ness of our method. Our model achieves state-of-the-art re-
sults even with the sparse 256 points.

Table S3. Training time (second per iteration) and IoU with
varying point sampling density. Time is obtained as an average
of 1K measurements. For measuring IoU, we used the ground truth
keypoint inputs.

# of sampled points Training time (s) IoU (%)

256 1.04 77.4
512 (Ours) 1.74 77.8

1024 3.15 77.6

S.3. Implementation Details

In this section, we report more details of our implemen-
tation that could not be included in the main paper due to
the space limit. Note that more implementation details are
also available through our code1.

1https://github.com/jyunlee/Im2Hands

https://github.com/jyunlee/Im2Hands


S.3.1 Network Architecture

Initial Hand Occupancy Network (I). For the query posi-
tional embedding module used to compute our query-image
attention (PosEnc in Equation 3), we use a shared MLP
composed of two fully-connected layers, each of them fol-
lowed by ReLU activation and dropout with a rate of 0.01.
For the image encoder-decoder (ImgEnc in Equation 3),
we use a ResNet-50 [6] architecture as an encoder and a
CNN composed of four deconvolutional layers as a decoder.
For the multi-headed self-attention module (MSA in Equa-
tion 3), we extract features of 8× 8 image patches using an
encoder of Vision Transformer [3] and apply self-attention
with two attention heads. The resulting features extracted
by query-image attention are concatenated with the features
extracted by HALO [7] encoder after the first layer in the
part occupancy functions of HALO. For the architecture of
HALO encoder and part occupancy functions, we follow the
design of HALO. We thus refer the reader to [7] for more
details.
Two-Hand Occupancy Refinement Network (R). For
iso-surface point extraction, we evaluate the occupancy
probabilities at uniformly sampled query points in 3D space
and collect the query points that are estimated to be on the
surface. We then apply farthest point sampling (FPS) to ob-
tain 512 points to create each of the hand point clouds (i.e.,
Pl and Pr). For feature cloud conversion, we use the same
image encoder-decoder used in I. For point cloud encoder
(PCEnc in Equation 5), we use the same encoder architec-
ture as in AIR-Net [5] except for the input point dimension,
which is increased due to our feature cloud conversion pro-
cedure. We use a shared PCEnc for both sides of hand fea-
ture clouds, but we distinguish each side by concatenating
a binary label – [1, 0] for left hand and [0, 1] for right hand
– to each of the point features. For our context encoder
(ContextEnc in Equation 6), we concatenate the inputs (zl,
zr, zI ) and apply an MLP composed of two fully-connected
layers, each of them followed by ReLU activation. For our
point cloud decoder that estimates the refined occupancy
(PCDec in Equation 7), we concatenate the query coordi-
nate x with the initial occupancy probability at x and feed
the resulting query vector to the decoder of AIR-Net along
with As and zc. For more details on the architecture of
PCEnc and PCDec, please refer to [5].
Input Keypoint Refinement Network (K). For KptEnc,
we use (1) an embedding layer to embed the index of each
keypoint and (2) an MLP composed of two fully-connected
layers to encode the coordinate of each keypoint. We then
concatenate the index feature and the coordinate feature for
each of the keypoints and set them as node features in a
two-hand skeleton graph. We then feed the skeleton graph
to a graph convolutional network (GCN) composed of four
layers with residual connections. The updated node features
are directly used for multi-headed self-attention (MSA) be-

tween the patch-wise image features, which are extracted
by the same Vision Transformer [3] encoder used in I. The
updated node features are then fed to an output keypoint
coordinate regressor, which is an MLP composed of two
fully-connected layers – each of them followed by ReLU
activation and dropout of a rate of 0.01.

S.3.2 Training Details

For I and R, we train each of the networks for 10 epochs
with a batch size of 8. We use an Adam optimizer with
an initial learning rate of 1e − 4, betas of [0.9, 0.999], an
epsilon of 1e− 8, and a weight decay parameter of 1e− 5.
We additionally use a learning rate scheduler to decay the
learning rate by 0.2 every 5000 training steps. For the loss
function to train R, we use a weighted sum of the proposed
loss terms (i.e., occupancy loss and penetration loss), with
the weight values set as 1 and 0.001, respectively. Other
training details (e.g., training query sampling) are the same
as in the original HALO framework (please refer to [7] for
more detail). For K, we train the network for 30 epochs
with a batch size of 32. We use an Adam optimizer with an
initial learning rate of 1e − 4 with a scheduler to decay the
learning rate by 0.3 every 5000 training steps.

S.4. Detailed Experimental Setups

S.4.1 Metric Computation

For Im2Hands and HALO [8], we extract the reconstructed
meshes by evaluating occupancy probabilities at uniformly
sampled query points in 3D space and applying March-
ing Cubes [10]. We then compute our metrics (i.e., mean
Intersection over Union and Chamfer L1-Distance) after
mid-joint alignment of each hand. Note that the existing
works [9,14] use Mean Per Vertex Position Error (MPVPE)
as an evaluation metric, which assumes one-to-one ver-
tex correspondence between the ground truth and the pre-
dicted meshes. As our method does not assume such vertex
correspondence, we use mean Intersection over Union and
Chamfer L1-Distance as our evaluation metrics as in other
implicit function-based reconstruction methods [2, 8].

S.4.2 Setups for Generalizability Test

In this section, we report more details of our setups for
the generalizability test (Section 4.4 in the paper). For
pre-processing the two-hand frames in RGB2Hands [13]
and EgoHands [1] datasets, we compute a coarse fore-
ground mask obtained by thresholding the depth map pro-
vided by [1, 13] to mask out the approximate background
region. We then directly apply Im2Hands trained only on
InterHand2.6M [11] to evaluate its generalization ability to
unseen hand shapes and appearances. Other experimental
settings are the same as in our main experiments on Inter-
Hand2.6M dataset.
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