
EFEM: Equivariant Neural Field Expectation Maximization
for 3D Object Segmentation Without Scene Supervision

— Supplementary Material —

Jiahui Lei1 Congyue Deng2 Karl Schmeckpeper1 Leonidas Guibas2 Kostas Daniilidis1

1 University of Pennsylvania 2 Stanford University
{leijh, karls, kostas}@cis.upenn.edu, {congyue, guibas}@cs.stanford.edu

This supplementary aims to provide more details of our
method (Sec. S.1,S.2), more information on our dataset
(Sec. S.4), and more visual results (Sec. S.5) and complete
tables (Sec. S.6). We also provide more ablation studies and
analysis in Sec. S.3

S.1. Details on the Equivariant Shape Prior
Here we explain the architectural design and implemen-

tation details of our equivariant shape prior. In Section
S.1.1, we introduce the equivariant point cloud encoder,
which takes a point cloud PNO×3 as input and outputs the
global equivariant latent code Θ. Then in Section S.1.2,
we will introduce the implicit decoder which decodes Θ to-
gether with any x1×3 3D query point to get its SDF value.

S.1.1. Encoder Networks

Before being fed into the encoder, the input point cloud
PNO×3 first has its centroid P̄ subtracted from it for transla-
tion equivariance. This centers the point cloud at the origin.

In Section S.1.1.1, we will explain the construction of the
backbone building blocks. In Section S.1.1.2, we will show
how to compute the final latent embedding outputs from the
backbone output.

S.1.1.1 Point Cloud Backbone

The backbone of our encoder is constructed from a stack of
equivariant blocks with each block aggregating information
from the point neighborhoods. We denoted the M th block
as L(M). The input to each block is a set of vector chan-
nel features (for each point) of shape Cin × 3, denoted as
F (M) = {F (M)

i }, i = 1, 2, . . . N where N is the num-
ber of points in the point cloud. Similarly, the output is a
set of new vector channel features F (M+1) = {F (M+1)

i }
with shape Cout × 3. Each block first fuses local informa-
tion in the point neighborhood and then fuses global infor-
mation with global pooling. We first explain two design
choices of the local fusion: VN-DGCNN aggregation and

VN-Transformer aggregation, and then provide details of
the global fusion. When entering the block, we first find the
K-nearest neighbors for each point in the feature space as
the VN-DGCNN [7, 10].
VN-DGCNN aggregation [7] We use this aggregation
for all the tabletop (mug and kitchen container) object shape
priors in our main paper experiments. The aggregation is
similar to [7]. We compute edge features in the KNN neigh-
borhood and use a symmetric operation to fuse all the edges:

F
(M+1)
i =

1

|Ni|
∑

(i,j)∈Ni

VNLA
(
(F

(M)
j − F

(M)
i)⊕ F

(M)
i

)
.

(1)
Here Ni is the KNN neighborhood of the ith point, and
⊕ means concatenation of the feature. VNLA() means a
standard Vector Neuron Linear layer followed by a standard
Vector Neuron Activation layer. In our implementation, we
use VN-LeakyReLU activations and never use BatchNorm.
VN-Transformer aggregation [1] We use this aggrega-
tion mode for the chair shape prior in our main paper. To
compute the new output feature for point i, we first compute
Q,K, V . For point i:

Qi = VNLA(F
(M)
i), (2)

and for all i’s k-nearest neighbors:

Kj = VNLA((F
(M)
j − F

(M)
i)⊕ F

(M)
i) (3)

Vj = VNLA((F
(M)
j − F

(M)
i)⊕ F

(M)
i). (4)

Here we also input the information about the query F
(M)
i

to the computation of K and V since we want to maxi-
mize the expressivity. This is not a critical design choice
as other variants of transformer or aggregation should also
work. Next, we discuss the invariant transformer attention
weight and the scale invariance.

1

Figure S1. Our shape Encoder-Decoder is equivariant to SIM(3) transformations. When the input point clouds (Yellow) are scaled, rotated,
and translated, our output shapes (Blue) are also correspondingly scaled, rotated, and translated.

The scale invariance can be easily obtained by follow-
ing the procedure from [3]. Note that our network does
not have bias terms, and all VN Linear maps maintain the
scale equivariance. Since we use VN-LeakyReLU (or VN-
ReLU), it is clear from [3] that such activation also main-
tains scale equivariance. However, when we want to take
the inner product of two rotation-scale equivariant features
to form the invariant attention weight [1], the inner product
will count the scale twice and is therefore not invariant. [3]
proposes a channel-wise normalization to get scale invariant
but rotation equivariant vector channel features in Section 5
of [3]. Given a scale and rotation equivariant vector chan-
nel feature FC×3, we first compute the direction F̂C×3 and
length F̃C×1 of each vector channel in F . Then we factor
out the scale by regarding F̃C×1 as a 1D vector and normal-
izing across the channel dimension C, so the output scale
invariant but rotation equivariant feature is:

F ′ = ChNorm(F) = F̂C×3 ⊙
F̃C×1

∥F̃C×1∥
, (5)

where ⊙ means the per channel multiplication. We use
ChNorm() to exclude the scale factor from Kj and Qi so
the attention weight for point i is neighbor j:

wj = Softmaxj

(
1√
3C

⟨ChNorm(Qi),ChNorm(Kj)⟩
)
,

(6)
where ⟨, ⟩ is the full inner product (not channel-wise, in-
cluding summation over channel dimension), which guar-
antees the weight is both rotation and scale invariant. The

final output feature for ith point is:

F
(M+1)
i =

∑
(i,j)∈Ni

wjVj , (7)

which is rotation and scale equivariant. We also use multi-
head attention by dividing the overall channel dimensions
into several groups and computing the attention weight per
channel group.
Global context [7] While each block can propagate and
aggregate information in the KNN neighborhood, we also
want to consider the global context to enhance the expres-
sivity of our encoder. After getting F (M+1), we perform a
global average pooling over all the point features and get the
averaged global feature F̄ (M+1), so the final output features
for each block is:

F ′(M+1) = VNLA(F (M+1) ⊕ F̄ (M+1)), (8)

where ⊕ means channel concatenation.
For efficiency, we also use Farthest Point Sampling [8],

to downsample the point cloud between layers leading to
a coarse-to-fine encoding. The encoder used in the experi-
ments has 7 blocks and the output feature dimension of each
block is [32, 32, 64, 64, 128, 256, 512].

After the final block, we apply average pooling over all
point feature outputs from the last block and use the result
as the output global encoding of our equivariant backbone,
which is denoted as F in our main paper Sec.3.1. Note that
F is vector channeled (shape C×3) and is rotation and scale
equivariant, but translation invariant, which means for any
rotation R, translation t and scale s, if the un-transformed
point cloud P has been encoded as F then the transformed
point cloud sPR+ t is guaranteed to be encoded as sFR.

S.1.1.2 Final Outputs

As explained in Sec.3 in the main paper, the output of the
encoder includes several latent embeddings Θ computed
with separated small network branches at the end of the
backbone. Denote the backbone output as F , the latent em-
beddings are defined as follows:

1. The rotation equivariant global latent code ΘR:

ΘR = ChNorm (VNL(F)) , (9)

where VNL denotes a standard VN Linear layer and
ΘR has shape 256 × 3 in our implementation. As
proven by [1, 3, 7], if the input point cloud is trans-
formed by any SIM(3) element (s,R, t), then the new
transformed rotation latent code is:

Θ′
R = ChNorm (VNL(sFR))

= ChNorm (VNL(F))R = ΘRR
(10)

2. The invariant global latent code Θinv:

Θinv = ⟨ChNorm(VNL(F)),ΘR⟩Channel , (11)

where ⟨, ⟩Channel denotes the channel-wise inner prod-
uct. The resulting invariant latent code has a scalar per
channel and has shape 256× 1 in our implementation.
Similarly, if the input is transformed by (s,R, t), the
new invariant code stays the same:

Θ′
inv = ⟨ChNorm(VNL(sFR)),ΘRR⟩Channel

= ⟨ChNorm(VNL(F))R,ΘRR⟩Channel

= ⟨ChNorm(VNL(F)),ΘR⟩Channel = Θinv

(12)

3. The explicit scale scalar Θs: This output is for query-
ing the SDF because the query position should first
eliminate the scale and then be sent to the MLP de-
coder. Θs is a single scalar output calculated by first
finding the per-channel vector length F̃C×1 and then
averaging over the channel:

Θs =

∑
c F̃c

C
. (13)

When the input is transformed by (s,R, t), the new
scale is:

Θ′
s =

∑
c (̃sFR)c
C

= s

∑
c F̃c

C
= sΘs

(14)

4. The corrected centroid Θc: although the translation
equivariance is naturally obtained by subtracting the
centroid, during decoding, the query position for the
SDF must also subtract the centroid to eliminate the

translation factor. However, when the observation is
partial, noisy, or unbalanced, the centroid will shift by
a large amount, so we let the network predict a centroid
correction vector to stabilize the shape prior:

Θc = VNL(F) + P̄ , (15)

where the VN linear layer here has only one channel
output. Θc has shape 1 × 3. Note that even without
any training, the predicted corrected centroid guaran-
tees the full SIM(3) equivariance, i.e. when the in-
put point cloud is transformed by a SIM(3) element
(s,R, t), the newly predicted center is:

Θ′
c = VNL(sFR) + (sP̄R+ t)

= sVNL(F)R+ sP̄R+ t

= s(VNL(F) + P̄)R+ t = sΘcR+ t

(16)

In summary, the output of the encoder is:

Θ = (ΘR,Θinv,Θc,Θs) = Φ(P), (17)

which contains all the information for a SIM(3)-
transformed shape. For any transformation g ∈ SIM(3)
represented as scale, rotation and translation (s,R, t) the
encoder strictly guarantees the equivariance and the shape
embeddings Θ obey transformations:

Θ′ = g ◦Θ = (ΘRR,Θinv, sΘcR+ t, sΘs) = Φ(sPR+ t).
(18)

S.1.2. Decoder Networks

Given a query position x1×3 in the 3D space, we first
canonicalize it to an invariant embedding along with the
shape codes and then process it with a standard MLP.

ŜDF (x; Φ(P)) = ŜDF (x; Θ)

= MLP
(〈

ΘR,
x−Θc

Θs

〉
channel

⊕Θinv

)
,

(19)

where the P denotes the input point cloud, the MLP de-
notes a standard non-equivariant MLP, and ⟨, ⟩channel means
the channel-wise inner product. ⊕ here means the channel
concatenation.

To show that the SDF is equivariant, we show that given
any SIM(3) element denoted as scale, rotation, and transla-
tion g = (s,R, t) the model strictly has:

ŜDF (x; Φ(P)) = ŜDF (sxR+ t; Φ(sPR+ t)), (20)

since we showed that the encoder is equivariant in the

Section S.1.1, we can show:

ŜDF (sxR+ t; Φ(sPR+ t)) = ŜDF (sxR+ t; g ◦Θ)

= MLP
(〈

ΘRR,
sxR+ t− (sΘcR+ t)

sΘs

〉
channel

⊕Θinv

)
= MLP

(〈
ΘRR,

(x−Θc)R

Θs

〉
channel

⊕Θinv

)
= MLP

(〈
ΘR,

x−Θc

Θs

〉
channel

⊕Θinv

)
= ŜDF (x; Φ(P)).

(21)

Therefore, our shape prior is equivariant to SIM(3) transfor-
mation, as shown in Fig. S1.

S.1.3. Shape Prior Training Details

SDF Loss The main loss is the average of the SDF L1
regression loss on each query point L1(x) = |ŜDF(x) −
SDF∗(x)| where SDF∗(x) is the ground truth SDF values.
Similar to DISN [13], we weight the near-surface regression
losses more to encourage near-surface accuracy:

LSDF =
λnear

∑
x∈Qnear

L1(x) + λfar
∑

x∈Qfar
L1(x)

|Qnear|+ |Qfar|
. (22)

Here Qnear is the set of query points whose absolute ground
truth SDF is smaller than a threshold (0.1 in our experi-
ments) and Qfar is the rest of the query points. The balance
weights in our experiments are λnear = 1.0 and λfar = 0.5.

Regularization Loss Our network guarantees scale and
translation equivariance without any training. However, Θc
and Θs are required to factor out the translation and scale
from each query position. We observe that letting the net-
work freely predict them will result in unstable optimization
in the early epochs of the shape prior training. As a result,
we have to regularize them. ShapeNet is a canonicalized
dataset where all the meshes are aligned so we can regular-
ize all the predicted Θs to be 1.0:

Lscale = |1.0−Θs|. (23)

Additionally, we have to apply a loss on Θc to correct the
centroid. As mentioned above, when the input is partial the
centroid is not a good reference origin for the shape SDF.
Since all the meshes are aligned in ShapeNet, we can di-
rectly regularize the predicted center to lie at [0.0, 0.0, 0.0]:

Lcenter = ∥Θc∥2. (24)

When the input point cloud is partial, this loss enforces the
network to correct the center from the centroid to the object
center. Even without the above loss, Θc also strictly guar-
antees the translation equivariance, but may not point to the
object center.

In summary, the total loss is:

L = ωSDFLSDF + ωcenterLcenter + ωscaleLscale, (25)

and in our experiments, we set ωSDF = 1.0, ωcenter = 0.2
and ωscale = 0.001.

Augmentation Although our network strictly guarantees
SIM(3) equivariance, the content of real-world observa-
tions are always partial and noisy. Therefore we apply sev-
eral, mainly content-wise, augmentations for the input point
cloud to let our shape prior better generalize to the real
world:

1. Depth point cloud: We use a synthetic camera to ran-
domly render depth images from different viewpoints.
The input point cloud is sampled from several depth
back-projections.

2. Random crop addition: We randomly add small ball
crops of other meshes in the training set to the ob-
ject’s neighborhood to make the network more robust
to crowded data.

3. Random crop removal: We randomly remove some
ball crops on the object surface.

4. Random plane addition: For the chair shape-prior
training, we also randomly add some small horizontal
or vertical planes to the neighborhood of the object.

5. Centroid augmentation: To robustify the Θc predic-
tion, we simulate a larger centroid shift by adding a
small gaussian noise to the computed input point cloud
centroid P̄ .

6. Other noise: We also add small gaussian noise to ev-
ery point.

S.2. Details on EFEM Implementation

S.2.1. Shape and pose output

As mentioned in Sec.3.2 in the main paper, our model
also provides mesh reconstruction and pose estimation for
each detected object. The implicit shape outputs with latent
Θ of the last iteration are converted to triangle meshes via
marching cube, which is visualized as colored meshes in the
figures in the main paper.

Since our network is fully equivariant, to output the ab-
solute pose of each object, we should have the knowledge
of what is the “absolute object coordinate frame”. Note that
all the meshes in the training set (ShapeNet [2]) are aligned,
so we exploit the alignment of the training set to output the
absolute pose estimation. Once the network is trained, for
every shape point cloud input Pj in the training set Xtrain,

we use our encoder Φ to encode all the shapes and form a
codebook:

CodeBook = {Θj = Φ(Pj)|Pj ∈ Xtrain}. (26)

Note that the codebook can be directly computed once the
shape prior is trained and saved to the file cache. Given
the proposal’s last Θ estimation, we first find the K-nearest-
neighbors (e.g. K = 16 in our mugs experiments) in the la-
tent space of Θinv. Then we align the point cloud of each of
the training set neighbors to our currently estimated shape.
Following [15], we solve a simple Procruste problem on ΘR
by treating each channel as a correspondence pair. We de-
note the kth neighbor’s latent code as Θ(k) and find an O(3)
transformation (including flipping):

U,S,VT = SVD

(∑
c

ΘR[c]
TΘ

(k)
R [c]

)
, (27)

where ΘR[c] with shape 1×3 is the vector at channel c, then
the O(3) transformation prediction is:

R̂ = UVT . (28)

To align the training set nearest neighbor shape point cloud
Pk from the ShapeNet canonical frame to our current esti-
mated shape, we apply:

P ′
k =

Θs

Θ
(k)
s

(Pk −Θ(k)
c)R̂T +Θc. (29)

After the latent registration, we also use several ICP steps
between the training shape point cloud and our estimated
shape point cloud to explicitly refine the rotation. We select
the most similar shape from the K neighbors by selecting
the one with the smallest Chamfer Distance to our estimated
shape. We use the transformation between our estimated
shape and the selected best-matched shape in the training set
as an approximate pose and size estimation for the detected
object. Given the mesh, an oriented bounding box can also
be computed from the pose and the shape. The poses and
bounding boxes are shown in all figures in our main paper.

S.2.2. Proposal filtering

Initialization and Steps To ensure that all objects of in-
terest are covered by some proposal initialization, we ini-
tialize far more proposals than the number of objects that
might appear in the scene. For example, we start with 400
initial random ball crops for the mug experiments. Fortu-
nately, many of these proposals can be eliminated after a
small number of steps. Although we observe that the it-
erations converge quickly, we set the Phase-1 independent
steps to run 15 iterations and Phase-2 joint steps to run 5
iterations to ensure full convergence.

Unreasonable elimination : At every EM iteration, we
count the number of points in the proposal that have smaller
distance errors and normal errors than the corresponding
thresholds (e.g. 0.1 and 60◦ for mugs experiments) and
eliminate the proposals with too few of these inlier points
(e.g. 300 for mugs experiments). Another straightforward
check we apply is on the shape size. Since it is not easy
to check the shape size directly in the SDF, we use the
above-mentioned bounding box computed from the shape
and pose by-products to eliminate unreasonable shape pro-
posals. For example, the real-mug experiments have the
reasonable X − Y radius inside [0.03m, 0.08m] and the
reasonable Z radius inside [0.015m, 0.1m]. The shape size
elimination happens at the end of Phase 1 and the end of
Phase 2.

Duplication and inclusion elimination : As mentioned
in Sec.3.3 of our main paper, we detect and resolve dupli-
cations between multiple proposals, which significantly re-
duces the number of proposals we have to maintain after
several early steps. Given a proposal, we identify a binary
inlier mask over all the scene points based on the decoded
distance error (Eq.4 in the main paper). If eD(x; Θ) < δdup
we mark the point as an inlier of the current proposal. δdup is
the inlier threshold and we set it to 0.04 in the mugs experi-
ments. We compare each proposal with all other proposals,
if the IoU between two binary inlier masks is larger than
a threshold (e.g. 70% for mugs experiments), we identify
them as duplicated and eliminate the one with a lower cur-
rent fitting score (Eq.8 in the main paper).

Similarly, during each iteration in Phase 2, we traverse
all the proposals and if more than δinclusion (e.g. 80% in
mugs experiments) of this proposal’s inliers are inside other
active proposals, we identify this proposal as included by
others. To seek a more abstract decomposition of the scene,
we eliminate the proposals that are contained by others.

Number of proposal changes We observe that because
of the efficient proposal management, the active proposals
that we need to consider quickly decrease to a small number
after a few iterations as shown in Fig. S2.

Figure S2. Number of active proposals at each step on the Syn-
MugTree testset.

Visualization of iterations We also provide a per-step vi-
sualization in Fig S9.

S.2.3. Others

To boost the iteration, when querying the new assign-
ment weight in the E-step, we only compute the query in-
side a large enough ball centered at the predicted center Θc
instead of querying all the scene pointcloud.

We also sharpen the assignment weight by linearly in-
creasing the αD, αN in Eq.6 in our main paper. For ex-
ample, for the mug experiments, the starting values are
αD = 3.0 and αN = 0.003 (with arccos returns in degree)
and the ending values are αD = 30.0 and αN = 0.006 at
the 10th step.

Another feature of our method is that we produce a wide
range of proposals with low to high confidence, enabling the
user to balance precision and recall. Note the mAP metrics
will evaluate both higher precision and higher recall perfor-
mance by computing the area of the Precision-Recall curve.
We use the following confidence thresholds for the visual
results in our main paper and supplementary document:

SynMugs Z 0.0 SynMugs SO3 0.0 SynMugs Pile 0.0

SynMugs Tree 0.4 SynMugs Box 0.7 SynMugs Shelf 0.3

RealMugs Z 0.0 RealMugs SO3 0.0 RealMugs Pile 0.2

RealMugs Tree 0.0 RealMugs Others 0.4 RealMugs Wild 0.3

SynChair Z 0.0 SynChair SO3 0.0 SynChair Pile 0.4

SynKit Z 0.2 SynKit SO3 0.2 SynKit Pile 0.2

RealChair Z 0.4 RealChair SO3 0.4 RealChair Pile 0.4

ScanNet 0.0

Table S1. Visualization confidence thresholds

For the Scannet [6] experiments, since the scene is larger,
we run EFEM for three rounds on each scene to greedily
cover the objects. In later rounds, we mark the previous out-
put points as invalid and the numbers of initialization pro-
posals in the three rounds are [300, 200, 100]. Since Scan-
Net has no unusually oriented chairs, we also filter out the
proposals where the predicted pose is not upright.

S.3. More Ablations and Studies

S.3.1. Shape Prior Network Design

The four components of the shape latent code Θ are
necessary for the SIM(3)-equivariant shape reconstruction.
Θs,Θc are for factoring out scales and translations (espe-
cially for stabilizing the partial observations); ΘR and the
inner product for rotations; and the invariant feature Θinv
is for global shape conditioning following the VN-ONet in
the original VNN [7]. Tab. S2 reports an ablation (Syn-
MugTree) on using the centroid and radius of the input as
Θc,Θs instead of predicting Θc,Θs by the network; and
removing rotation equivariance by using a vanilla PointNet
and trained with or without the rotation augmentation.

Setting AP AP50 AP25

original 68.8 99.0 99.8
No learned Θc, use centroid 65.7 99.0 99.5
No learned Θs, use radius 65.3 99.1 99.5
PointNet No-Augmentation 6.8 40.3 82.2
PointNet R-Augmentation 52.1 79.4 84.9

Table S2. Ablation study for equivariant shape prior network
(equivariant shape priors in gray).

S.3.2. Different Initialization and timing

We further study how our performance and running time
is affected by the initialization strategy in Tab. S3. We re-
port the performance and the averaged inference time (per
scene, all running on a laptop with i9-11950H CPU and
RTX3080 GPU) with different initialization parameters on
SynMugTree (number n and radius r of the initial propos-
als, original n=400,r=0.07). We also test on a different crop
pattern with vertical cylinders for SynMugTree. Running
the inference on SynMugTree 4 times with totally different
random seeds leads to an mAP50 STD 0.53%.

Setting (r=0.07) AP AP50 Time (s)

original (n=400) 67.9 99.1 31.8
n=50 39.9 62.0 7.7
n=200 68.2 98.3 19.0
n=800 68.2 99.6 58.4

Setting (n=400) AP AP50 Time (s)

r=0.04 66.5 97.8 21.2
r=0.10 68.3 98.1 37.3
r=0.20 57.0 82.6 53.0
cylinder(r=0.07,h=∞) 67.9 99.1 31.4

Table S3. Study for initialization parameters and running time on
SynMugTree

S.4. Dataset Details
S.4.1. Synthetic Scenes

We simulate our synthetic dataset with the SAPIEN [12]
simulator to produce physically realistic arrangements of
the objects.

Assets To create assets for our simulation, we first pre-
process the corresponding category meshes from ShapeNet
via the convex decomposition algorithm CoACD [11]. If no
convex decomposition is applied, we can not generate phys-
ically plausible contact, such as mugs hanging on the tree
or piles of mugs. We use the dataset split from our shape-
prior training to generate different folds (train/val/test) of
the scenes ensuring that all the objects in testing scenes are
novel to our shape prior.

Tabletop Scenes For the synthetic tabletop scenes (Mugs
and Kitchen containers), we place 4 synthetic depth cam-
eras at the corners of a table and place the objects in a
bin on the table, which is a common setup for tabletop
manipulators. As demonstrated in Fig.3 in the main pa-
per, we simulate realistic IR sensor depth patterns because
we take advantage of the IR ray tracing [14] simulation in
SAPIEN [12]. The mesh reconstruction is created by inte-
grating 4 view depths via TSDF fusion. For the mugs Shelf
configuration, we reduce the number of depth cameras from
4 to 2 since the shelf is only visible from one side as shown
in Fig.3 in our main paper.

Chair Scenes Unlike tabletop scenes, real-world indoor
scenes are always captured by continuous scans instead of
static cameras. The continuous scan will result in smoother
and better reconstruction. Therefore we capture the chair
scene with 8 static cameras with ideal depth (not IR ray
tracing). We use more cameras to capture more complete
surfaces and since the depth is ideal, the integration from 8
static views can be regarded as similar to the quality of the
scan.

S.4.2. Real Scenes: Chairs and Mugs

Our real dataset contains 240 reconstructions of real
scenes containing challenging configurations and back-
grounds. The distribution of configurations is given in Ta-
ble S4. More data are collected for scenes with more com-
plex configurations or that are harder to create in simulation
environments.

RealMugs Z 10 RealMugs SO3 10 RealMugs Pile 10

RealMugs Tree 50 RealMugs Others 50 RealMugs Wild 50

RealChair Z 20 RealChair SO3 20 RealChair Pile 20

Table S4. Chairs and Mugs dataset counts

Collection As shown in Fig.S6, the tabletop data collec-
tion setup is very similar to the simulation. We mount 4
realsense D455 on 4 corners of the table. The poses of the
cameras are calibrated manually by a chessboard in the mid-
dle of the table. For the real mugs Others configuration, we
use random distractor objects. For the real mugs Wild con-
figuration and all chair scenes (Fig. S7), we use an iPad with
a lidar scanner to scan the wild scenes.

Annotation We develop a lightweight annotation tool
based on MeshLab [5]. All the chairs and mugs in the scene
are annotated with the instance ID at each vertex.

S.5. Additional Results
S.5.1. Comparison to Baselines

We show additional comparisons between our method
and the baselines on the real-mug Tree, Others, and Wild

test sets while trained on different synthetic setups. Fig. S3
shows the precision and recall of different methods, where
the widely adopted mAP metric is the area under the
Precision-Recall curve (leftmost in Fig. S3). Ours is dis-
played in dark blue, which shows advantages over other
baselines.

We also show visual results of ours and all the baselines
on real mugs Others (Fig. S5) and Wild (Fig. S4) test set.
Since the visual results are affected by the confidence selec-
tion, we pick a threshold that has relatively better precision
by the PR curve Fig S3 for all the methods and show both
the zero threshold (all predicted masks) on the left column
in Fig. S5,S4 and the selected threshold on the right column.

S.5.2. More visualization on Chairs and Mugs

We show more visual results on our Chairs and Mugs
real-world test set in Fig. S6 and Fig S7.

S.5.3. More results on ScanNet

We show more qualitative results on ScanNet in Fig. S8.
And we further report Tab. S5 for comparison with base-
lines on ScanNet testset chairs category. Note that some

Method AP A50 A25

EFEM (None) 20.2 39.0 48.3
CSC (20pts) 26.4 42.4 56.3
CSC (200pts) 41.5 61.1 70.4
Box2Mask (Box) 62.5 81.6 88.7
SoftGroup (Full) 69.4 86.2 91.3

Table S5. Comparison with baselines on ScanNet testset chairs
category.

failure cases are also shown in Fig. S8, where some other
stuff that looks like a chair (e.g. the basin in a rest room,
right bottom corner in Fig. S8) are also recognized as the
chair since our model is fully geometry based. Some chairs
in ScanNet are also not detected since they are too partial.
We leave this gap for future works to fill.

S.6. Full tables
We provide the full mAP25% here due to the page limit

in the main paper. We note that in some novel scenes, the
weakly supervised Box2Mask [4] works even better than
the supervised SoftGroup [9]. Potential reasons might be:
(1.) Box2Mask uses over-segmentation as input, which
provides more structural information and is more robust in
novel scenes. (2.) the in-accurate box supervision provides
some augmentation that makes the networks harder to over-
fit.

Figure S3. Precision-Recall (IoU50%) on RealMugs novel settings. In the legend on the left, the setting names in the bracket indicate
where the baselines are trained and the number of predicted masks over the whole testing set is reported on the left. Note that Box2Mask [4]
predicts large numbers of low confidence masks in the Wild setup.

SynMugs Testing Z SO3 Pile Tree Box Shelf

Training Metrics AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

CSC (100) 6.0 22.0 49.3 1.9 7.6 26.4 0.1 0.5 5.8 0.0 0.0 1.3 0.0 0.2 2.2 0.0 0.0 0.8
CSC (200) 78.7 98.1 98.1 62.7 83.3 88.6 8.9 17.4 35.6 0.6 2.0 18.1 2.0 5.0 11.8 0.8 3.1 21.2
Box2Mask 96.9 100 100 92.1 99.3 99.6 36.7 27.6 84.6 12.3 45.3 80.9 10.0 24.0 33.8 8.6 14.6 16.5Scene Z

SoftGroup 100 100 100 96.5 98.5 98.5 21.9 27.6 35.6 0.4 1.8 10.9 1.6 3.7 20.3 9.2 17.2 35.9

CSC (100) 1.7 8.6 44.3 1.4 6.5 29.1 0.1 0.6 5.6 0.0 0.0 2.4 0.0 0.1 2.1 0.1 0.6 5.6
CSC (200) 70.0 99.3 99.4 72.7 95.7 97.9 22.3 42.2 60.7 10.2 24.6 48.7 5.4 12.3 21.1 5.2 20.0 61.2
Box2Mask 95.8 100 100 94.7 100 100 53.7 80.1 91.9 30.2 80.6 92.5 26.5 40.1 45.4 13.4 33.0 51.2Scene SO3

SoftGroup 100 100 100 99.6 99.8 99.8 43.9 51.9 58.4 10.0 18.7 28.7 15.3 21.3 23.8 20.8 30.9 32.0

CSC (100) 0.0 0.3 6.0 0.0 0.3 5.8 0.0 0.1 4.2 0.0 0.0 1.1 0.0 0.0 0.8 0.0 0.0 6.0
CSC (200) 53.3 88.4 91.9 50.2 77.7 84.1 29.5 61.3 76.3 29.4 66.2 81.3 7.6 19.8 27.1 10.3 34.1 84.4
Box2Mask 96.0 100 100 94.7 100 100 78.7 99.6 99.9 55.2 94.8 96.1 42.7 52.9 53.0 26.3 54.6 67.2Scene Pile

SoftGroup 99.5 100 100 99.7 100 100 89.0 93.2 93.6 42.3 72.8 76.3 23.4 25.5 25.7 28.8 39.5 42.6

ShapeNet EFEM 78.4 99.8 100 79.3 99.8 100 68.2 96.8 97.6 68.8 99.0 99.8 59.9 77.0 77.6 48.7 72.4 80.7

Table S6. Full table with mAP25% on SynMugs test set.

Figure S4. Comparison on RealMugs Wild test set. The left labels show the name of the methods and where they are trained. The two
numbers below the method names are the visualization thresholds. The left column is with threshold 0.0, which means showing all the
predicted masks; and the right column is with the thresholds we picked from the precision-recall curves (Fig. S3).

Figure S5. Comparison on RealMugs Others test set. The format is the same as Fig. S4.

Figure S6. More visual results on RealMugs. We show the shape, pose, and bounding box by-products on the second row and the predicted
masks on the third row.

Figure S7. More visual results on RealChairs. The format is the same as Fig. S6.

Figure S8. More visual results on ScanNet.The format is the same as Fig. S6.

Figure S9. Visualization of all steps of the 4 proposals shown in the main method figure (Fig.2) in our paper. From left to right corresponds
to the first to the fourth rows in Fig.2 in our main paper. The left top corner has the step number and if the proposal is terminated, the
proposal will be marked in red. Each step has 4 sub-figure visualizations, from the left to the right: (1.) the visualization of assignment
mask Wt on the full point cloud; (2.) a local crop of Wt; (3.) the point cloud Pt sampled based on Wt; (4.) the estimated shape based on
the sampled point cloud Pt.

RealMugs Testing Real Z (10) Real SO3 (10) Real Pile (10) Real Tree (50) Real Others (50) Real Wild (50)

Training Metrics AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

CSC (100) 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.9 1.8
CSC (200) 72.1 99.8 99.8 9.5 21.4 44.6 0.3 1.6 11.5 0.6 2.8 19.7 6.7 16.0 41.1 2.0 6.1 14.7
Box2Mask 98.1 100 100 93.1 100 100 5.6 19.1 72.9 8.4 28.8 71.6 18.4 39.5 73.2 18.1 27.9 30.9Scene Z

SoftGroup 93.7 97.6 97.6 97.3 100 100 0.0 0.0 8.2 0.9 3.4 28.5 4.3 9.1 50.0 18.3 32.9 65.7

CSC (100) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.7 1.9 2.9
CSC (200) 68.4 100 100 59.8 100 100 1.0 3.7 23.1 4.8 20.1 57.9 6.9 19.7 47.9 3.9 11.8 34.2
Box2Mask 100 100 100 95.3 100 100 12.7 34.3 74.5 19.6 49.2 67.8 27.1 50.6 73.8 50.3 74.8 82.4Scene SO3

SoftGroup 99.2 100 100 98.2 100 100 2.8 4.8 25.5 10.4 21.7 45.4 6.5 13.3 48.3 18.3 30.7 41.8

CSC (100) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.8 3.5
CSC (200) 13.0 45.0 64.2 22.7 65.2 78.3 5.3 30.1 82.5 1.5 8.0 53.6 3.5 15.4 45.3 2.8 8.5 23.3
Box2Mask 100 100 100 95.8 100 100 72.3 98.0 100 55.8 98.1 99.6 56.0 79.2 81.4 45.1 71.4 73.6Scene Pile

SoftGroup 99.6 100 100 99.7 100 100 74.7 86.3 86.3 53.4 83.0 88.5 50.9 66.5 68.8 48.1 65.9 69.4

ShapeNet EFEM 87.2 100 100 87.3 100 100 63.1 94.0 94.0 69.6 95.4 96.2 69.7 89.4 90.0 54.1 82.3 82.3

Table S7. Full table with mAP25% on RealMugs testset.

SynChairs Testing Z SO3 Pile

Training Metrics AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

CSC (100) 66.2 83.1 85.7 56.6 80.2 81.9 6.1 15.2 37.1
CSC (200) 77.7 91.0 92.8 63.7 85.1 86.6 10.5 22.7 44.7
Box2Mask 99.9 100 100 95.8 98.9 98.9 19.3 41.2 73.4Scene Z

SoftGroup 99.8 100 100 94.8 98.5 98.5 24.1 36.5 53.2

CSC (100) 74.9 81.4 84.1 77.3 82.4 83.3 17.7 31.0 45.4
CSC (200) 84.3 86.6 87.4 85.4 88.5 89.2 20.6 35.3 49.6
Box2Mask 99.7 100 100 99.1 99.5 100 50.5 80.3 92.2Scene SO3

SoftGroup 99.6 100 100 99.1 100 100 55.1 68.2 75.1

CSC (100) 67.0 74.1 78.7 74.6 82.1 85.3 47.2 63.8 67.9
CSC (200) 71.7 76.3 79.3 88.4 92.4 94.5 67.4 81.6 84.6
Box2Mask 99.6 99.7 99.7 99.5 99.7 100 78.6 96.9 98.4Scene Pile

SoftGroup 99.4 100 100 98.9 100 100 95.0 97.0 97.1

ShapeNet EFEM 93.1 99.2 99.5 86.1 97.4 97.5 75.3 88.0 94.6

Table S8. Full table with mAP25% on SynChairs testset.

SynKit Testing Z SO3 Pile

Training Metrics AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

CSC (100) 12.7 29.9 49.5 7.5 14.5 25.8 2.3 5.9 15.4
CSC (200) 63.0 80.9 87.3 37.9 49.2 69.3 12.2 23.2 48.8
Box2Mask 89.7 97.3 98.6 69.6 87.0 91.8 41.4 68.9 84.6Scene Z

SoftGroup 93.6 96.8 97.2 94.0 99.3 99.5 52.3 63.5 72.8

CSC (100) 8.5 21.7 40.7 11.3 23.8 55.8 2.0 5.4 21.4
CSC (200) 27.8 48.9 66.0 53.9 77.5 87.7 18.1 38.9 62.9
Box2Mask 85.3 96.2 96.8 91.8 98.5 99.5 52.9 76.5 87.8Scene SO3

SoftGroup 89.3 93.9 94.5 96.9 99.3 99.3 56.2 67.2 72.9

CSC (100) 3.4 11.2 24.0 2.6 7.1 20.1 1.4 4.5 19.1
CSC (200) 26.5 53.8 72.8 44.8 73.6 90.2 28.8 60.4 81.2
Box2Mask 87.2 97.9 98.1 92.1 98.6 99.4 74.8 94.6 97.0Scene Pile

SoftGroup 93.7 97.3 97.7 96.0 98.8 99.5 84.6 91.3 92.0

ShapeNet EFEM 69.4 83.4 83.7 67.6 83.1 84.6 60.1 78.9 80.7

Table S9. Full table with mAP25% on SynKit testset.

References
[1] Serge Assaad, Carlton Downey, Rami Al-Rfou, Nigamaa

Nayakanti, and Ben Sapp. Vn-transformer: Rotation-
equivariant attention for vector neurons. arXiv preprint
arXiv:2206.04176, 2022. 1, 2, 3

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 4

[3] Yunlu Chen, Basura Fernando, Hakan Bilen, Matthias
Nießner, and Efstratios Gavves. 3d equivariant graph im-
plicit functions. ECCV, 2022. 2, 3

[4] Julian Chibane, Francis Engelmann, Tuan Anh Tran, and
Gerard Pons-Moll. Box2mask: Weakly supervised 3d se-
mantic instance segmentation using bounding boxes. In
European Conference on Computer Vision, pages 681–699.
Springer, 2022. 7, 8

[5] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-
teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In Vit-
torio Scarano, Rosario De Chiara, and Ugo Erra, editors,
Eurographics Italian Chapter Conference. The Eurograph-
ics Association, 2008. 7

[6] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 6

[7] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12200–12209, 2021. 1, 2, 3, 6

[8] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2

[9] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2708–
2717, 2022. 7

[10] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1

[11] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su.
Approximate convex decomposition for 3d meshes with
collision-aware concavity and tree search. arXiv preprint
arXiv:2205.02961, 2022. 6

[12] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive
environment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11097–
11107, 2020. 6, 7

[13] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. Ad-
vances in Neural Information Processing Systems, 32, 2019.
4

[14] Xiaoshuai Zhang, Rui Chen, Fanbo Xiang, Yuzhe Qin, Ji-
ayuan Gu, Zhan Ling, Minghua Liu, Peiyu Zeng, Songfang

Han, Zhiao Huang, Tongzhou Mu, Jing Xu, and Hao Su.
Close the Visual Domain Gap by Physics-Grounded Active
Stereovision Depth Sensor Simulation. arXiv preprint, 2022.
7

[15] Minghan Zhu, Maani Ghaffari, and Huei Peng.
Correspondence-free point cloud registration with so
(3)-equivariant implicit shape representations. In Confer-
ence on Robot Learning, pages 1412–1422. PMLR, 2022.
5

