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Overview
In this supplementary material, we provide the following
items for a better understanding of the main paper:

A. Ground Truth Labels of VIGOR Dataset (Section 4.1)
B. Tuning Number of Slices (Section 4.5)
C. Inference on Images with a Limited HFoV (Section 4.6)
D. Details on Runtime and Memory Usage (Section 4.8)
E. Visualization: SliceMatch Predictions (Section 4.6)

A. Ground Truth Labels of VIGOR Dataset
We have visually inspected the image pairs of the

VIGOR dataset [4] and noticed a location inconsistency be-
tween image pairs that share the ground image. Figure 1
shows an image pair formed by a ground image and a posi-
tive or semi-positive aerial image from Seattle with the orig-
inal and corrected ground truth camera locations indicated.
Depending on the aerial image, the original ground truth lo-
cation (yellow dot) is in different locations. However, this
should be the same visual location (red diamond) for all
aerial images corresponding to this specific ground image.

The authors of the VIGOR dataset [4] have used a
ground resolution equal to 0.114m/pixel for all 4 cities of
the dataset to convert the latitude and longitude of a ground
image to its location in aerial images. We have measured the
ground resolution ourselves. Pixel-level correspondences
between aerial images that have a visual overlap can be cal-
culated using cross-correlation. Then we can overlay these
aerial images. Figure 2 shows this for two aerial images.
The distance in pixels between the two image centers can
be measured (see Figure 2c). In addition, the longitude and
latitude of the image center of each aerial image are known,
allowing the distance to be determined in meters as well.
The ground resolution of an aerial-aerial image combina-
tion can be calculated using,

ground resolution =
distance in meters
distance in pixels

. (1)

* indicates equal contribution.

(a) Ground view (b) Positive

(c) Semi-pos. 1 (d) Semi-pos. 2 (e) Semi-pos. 3

Figure 1. A ground image together with the four matching
aerial images from VIGOR [4]. The original and the corrected
locations are indicated by the yellow dot and red diamond, respec-
tively. South, West, North, and East are the orange, pink, green,
and blue lines, respectively. Semi-pos. means Semi-positive.

We have calculated a new ground resolution for each
city by averaging the ground resolutions of a city’s aerial-
aerial image combinations. Table 1 shows the original
and our measured ground resolutions. It turns out that the
ground resolutions differ per city. The measured value for
the ground resolution for New York is almost equal to the
ground resolution that the VIGOR authors have used. How-
ever, the measured resolutions for the other cities differ sig-
nificantly.

The measured ground resolutions have been used to de-
termine corrected ground truth location labels. Table 2
shows statistics on the absolute error in meters between the
original and corrected locations. The positive image pairs of
the dataset were used to determine the statistics since only
those image pairs were used for the experiments (see Sec-
tion 4.1). For Seattle, the difference between the original
and measured ground resolution is the largest and this re-
sults in errors of more than 3 meters (see Table 1). The other
3 cities have smaller mean and median errors than Seattle.
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(a) Aerial image 1 (b) Aerial image 2 (c) The overlaid aerial image 1 and 2

Figure 2. Two aerial images from the VIGOR dataset [4] that have a visual overlap. Each image center is indicated by an orange
dot and the connection between the two dots shows the distance in pixels. (a) Aerial image 1 with the visual overlap indicated by the
red contour. (b) Aerial image 2 with the visual overlap indicated by the red contour. (c) The overlaid aerial image 1 and 2. We use
cross-correlation to find the amount of overlapping (in pixels) between aerial image 1 and 2.

In our localization only and pose estimation experiments
for the VIGOR dataset, we resize the aerial image to 512×
512 pixels. As a result, the ground resolution of the resized
aerial images can be obtained by multiplying the measured
ground resolutions from Table 1 by 1.25 (= 640/512).

City Original Measured

Chicago 0.114 0.111
New York 0.114 0.113
San Francisco 0.114 0.118
Seattle 0.114 0.101

Table 1. The original and our measured ground resolution for
the 4 cities from VIGOR [4]. The ground resolutions correspond
to aerial images with a size of 640 × 640 pixels, and the unit of
the ground resolution is m/pixel.

City Min. Mean Median Max.

Chicago 0.00 0.43 0.45 0.80
New York 0.00 0.25 0.25 0.47
San Francisco 0.00 0.46 0.49 0.95
Seattle 0.00 1.72 1.79 3.14

Table 2. Statistics on the absolute error in meters of the labels
for the 4 cities from VIGOR [4]. The absolute error is defined as
the distance between the original and the corrected locations. Min.
and Max. indicate Minimum and Maximum, respectively.

B. Tuning Number of Slices
To supplement our ablation study on the number of slices

(see Section 4.5), we visualize the predictions from Slice-
Match models with different numbers of slices on VIGOR
same-area, see Figure 3. Using larger N (more slices) main-

tains more of the relative orientation between the visible
components in the scene. Note that lowering N makes the
descriptors less orientation aware, which we observe low-
ers performance. Generally, we observe that increasing to
N = 16 makes the descriptors more discriminative, result-
ing in less uncertainty about the true location and orienta-
tion. However, our ablation study in the main paper Table
1 demonstrates a trade-off: if N becomes too large, the de-
scriptor becomes too sensitive to pose differences between
the best candidate pose and true pose.

Similarly, we also conducted an ablation study for the
number of slices on the KITTI dataset [1, 2], see Table 3.
For this study, we used the Same-Area setting of KITTI and
the 20° orientation prior. Similar to the VIGOR dataset,
the highest performance is achieved with 16 slices for the
KITTI dataset as well. For 8 and 32 slices, the performance
is slightly worse.

Cross-View ↓ Location (m) ↓ Orientation (°)
N Attention Mean Median Mean Median

8 ✓ 8.74 5.11 4.54 4.01
16 ✓ 7.96 4.39 4.12 3.65
32 ✓ 8.03 4.72 4.34 3.65

Table 3. Location and orientation error for different slice
number N values for the Same-Area setting on the KITTI
dataset [1, 2]. Best performance in bold.

C. Inference on Images with a Limited HFoV
Additionally, we conducted experiments that vary the

HFoV of test images in the VIGOR dataset (same-area), see
Figure 4 (median errors). As expected, SliceMatch’s perfor-
mance degrades when the HFoV of the ground-level query
image reduces, as it contains less information. Training on



Figure 3. SliceMatch models with different slice number N values. The ground truth camera pose and our estimated camera pose are in
green and yellow, respectively. Red shading indicates the highest similarity score between the ground descriptor and the aerial descriptors
among all orientations at that location.

ground images with a small HFoV, e.g. ∼ 67.5◦, recuper-
ates some performance when testing on small HFoVs.
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(b) Orientation estimation performance

Figure 4. Median location and orientation estimation errors
on VIGOR [4] for limited HFoV. (a) Location estimation perfor-
mance. (b) Orientation estimation performance.

D. Details on Runtime and Memory Usage

Here, we provide a detailed analysis of the runtime and
memory usage of SliceMatch (see Section 4.8).

Both pre-computation of slice masks and parallelization
of pose descriptor aggregation contribute to our efficiency.

For a single input pair, we process candidate poses in paral-
lel by performing a single (large) matrix multiplication (the
matrix has the pre-computed masks as rows). Note that the
candidate poses and thus the masks are the same for all test
images. Since we never need to recompute the masks, pre-
computation is excluded from the reported inference time.
On a single input pair in the VIGOR dataset, our feature ex-
traction / descriptors aggregation / pose comparison takes
3.4ms / 1.5ms / 1.1ms, respectively. For the KITTI dataset,
this is 3.6ms / 1.6ms / 1.2ms, respectively.

Importantly, the runtime of SliceMatch remains nearly
constant as the number of used candidate poses K increases,
while memory scales linearly, see Figure 5 where we test
for N = 16 and K/N ∈ {1, 10, 100, 1k, 10k, 100k}. Our
main experiments used K/N = 28.2k/16 = 1.76k for
VIGOR, and K/N = 14.4k/16 = 0.9k for KITTI. In prac-
tice, memory will thus be the limiting factor for determining
the number of poses that can be used.
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(b) Memory usage

Figure 5. SliceMatch frames per second and memory usage for
a varying number of poses. Note that the x-axis uses log-scale.

E. Visualization: SliceMatch Predictions
Here we provide extra qualitative results for our experi-

ments in the main paper (see Section 4.6).
Figure 6 shows successful predictions of SliceMatch for



the VIGOR [4] and KITTI [1, 2] datasets. In Figure 6a,
Figure 6b, Figure 6c, and Figure 6h, it can be seen that
the predicted similarity map is aligned with the road and
that the predicted orientation is in line with the orientation
of the ground image. In contrast, in Figure 6a, Figure 6b,
Figure 6g, and Figure 6h, MCC [3] predicts a location on
the road, but the orientation sometimes differs 180 degrees
from that of the ground image. In Figure 6d and Figure 6i,
LM [2] converges to a location on the roof of a building for
some image pairs.

Figure 7 shows some failure cases of SliceMatch. Slice-
Match can predict a multi-modal similarity map. In Fig-
ure 7a, Figure 7b, Figure 7c and Figure 7d, it can be seen
that SliceMatch predicts two peaks, but the wrong peak is
used as the prediction. The ground image of Figure 7e con-
tains few discriminating objects and this can be observed
in the predicted similarity map. SliceMatch predicts un-
certainty aligned with the road. The lateral error is small,
however, the longitudinal error is large.
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(a) VIGOR example 1 (b) VIGOR example 2 (c) VIGOR example 3 (d) KITTI example 1 (e) KITTI example 2
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Figure 6. Qualitative evaluation of SliceMatch on VIGOR [4] and KITTI [1, 2]: successful cases. Top row: input ground image.
Bottom row: GT and pose estimation results overlayed on input aerial image. Red shading indicates the highest similarity score between
the ground descriptor and the aerial descriptors among all orientations at that location.

(a) VIGOR example 1 (b) VIGOR example 2 (c) VIGOR example 3 (d) KITTI example 1 (e) KITTI example 2

Figure 7. Qualitative evaluation of SliceMatch on VIGOR [4] and KITTI [1, 2]: failure cases. Top row: input ground image. Bottom
row: GT and pose estimation results overlayed on input aerial image. Red shading indicates highest similarity score between the ground
descriptor and the aerial descriptors among all orientations at that location.


