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A. Implementation and training details.
We carried out experiments using PyTorch [5] and a sin-

gle Nvidia V100 GPU. For all considered backbones (pre-
trained on ImageNet), we trained the two last convolutional
blocks for one epoch only on the MSLS train set (∼500k
pairs), making an efficient use of training data. We use the
SGD optimizer with initial learning rate of 0.1 for the runs
with the GCL function and 0.01 for those with the CL func-
tion, and decrease it by a factor of 10−1 after 250k pairs. For
the TB.Places and 7Scene experiments, since they are much
smaller datasets we train for 30 epochs, reaching conver-
gence around epoch 15 for both datasets. The initial learning
rate is the same as we used for the MSLS experiments, and
we decrease it by a factor of 10−1 after every 5 epochs. All
the descriptors are L2-normalized.

B. Relabeling with image similarity proxies
2D Field of View Overlap: MSLS data set The authors
of MSLS defined a positive match when the retrieved map
image falls within 25m and 40◦ from the query. We define
a similarity measure that satisfies those constraints. Image
pairs taken at locations that are closer than 25m and with
orientation differences lower than 40◦ are expected to have a
similarity higher than 50%, to be considered similar. More-
over, the borderline cases with distances close to 25m and/or
orientation difference near to 40◦ should have a similarity
close to 50%. Hence, we define r = 25m × 2 = 50m and
estimate a θ that gives approximately a 50% FoV overlap for
the borderline cases, i.e. 0m@40◦, and 25m@0◦. For the
former, the optimal θ corresponds to 80◦, and for the second
latter to 102◦. We settle for a value in the middle and define
θ = 90◦, which gives 55.63% and 45.01% FoV overlaps in
the borderline cases. We display examples of the similarity
ground truth for MSLS in Fig. 1. We compute the similarity
ground truth for each possible query-map pair, per city. The
new annotations are publicly available.

2D Field of View Overlap with IMU and laser tracking:
TB-Places dataset We present another computation of the
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Figure 1. Example image pairs from the MSLS dataset. The first
row shows the query images, the second row shows the corre-
sponding matches from the map set, and the third row shows the
estimated 2D FoV overlap. The query image is associated with the
red camera, while the map image with the blue camera. The first
column shows a positive match with 75.5% FoV overlap, and many
visual features in common. The second column shows a borderline
pair: the two images have 50.31% FoV overlap and some features
in common. The third column shows a soft negative match, where
the two images have FoV overlap of 16.78%. The fourth column
shows a hard negative match, where the two images are taken by
cameras looking in opposite directions, and the FoV overlap is 0%.

2D field of View overlap to estimate the similarity of image
pairs when 6DOF camera pose information is available as
metadata next to the images in the dataset. The translation
vector (t0, t1) and orientation angle α are extracted from the
pose vector.

This is the case of the TB-Places dataset [2], for visual
place recognition in gardens, created for the Trimbot2020
project [9]. It contains images taken in an experimental gar-
den over three years and includes variations in illumination,
season and viewpoint. Each image comes with a 6DOF cam-
era pose, obtained with an IMU and laser tracking, which
allows us to estimate a very precise 2D FoV. According to
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Figure 2. Example image pairs from the TB-Places dataset. The
first row shows a positive pair with FoV overlap of 74%. The
second row depicts a soft negative pair with FoV overlap equal to
41%. The red camera corresponds to the query image, while the
blue one to the map image.

the original paper of the TB-places dataset, we set the FoV
angle of the cameras as θ = 90◦ and the radius as r = 3.5m.
We thus estimate the 2D field of view overlap and use it to
re-label the pairs of images contained in the dataset. We pro-
vide the similarity ground truth for all possible pairs within
W17, the training set. We show some examples of image
pairs and their 2D FoV overlap in Fig. 2.

3D Surface Overlap: 7Scenes dataset

When the 3D reconstruction of a concerned environment
is available, we estimate the degree of similarity of image
pairs by computing the 3D Surface overlap. We project a
given image with an associated 6DOF camera pose onto
the reconstructed pointcloud of the environment. We select
the subset of 3D points that falls within the boundaries of
the image as the image 3D Surface. For an image pair, we
compute their 3D Surface overlap as the intersection-over-
union (IoU) of the sets of 3D points associated with the
two images. This computation is similar to the maximum
inliers measure proposed in [6], where it was used as part
of a pair-mining strategy that also involved the computation
of a distance in the latent space. We consider, instead, the
computed 3D Surface overlap as a proxy for the degree of
similarity of a pair of images.

We use the 3D Surface overlap to re-annotate the 7Scenes
dataset [8], an indoor localization benchmark, that contains
RGBD images taken in seven environments. Each image
has an associated 6DOF pose, and a 3D reconstruction of
each scene is available. We provide annotations for each
possible pair within the training set per scene. We show
some examples of the 3D Surface overlap in Fig. 3. We
display the 3D Surface associated to the query image in red,
that of the map image in blue and their overlap in magenta.
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Figure 3. 3D Surface overlap examples from the 7Scenes dataset.
The first row shows a positive pair with 3D Surface overlap of 75%.
The second row depicts a borderline pair with 50% 3D Surface
overlap. The last row shows a soft negative image pair with 25%
3D Surface overlap. The red pointcloud corresponds to the query
3D Surface, the blue one is the map, and the magenta represents
the overlap between them.

B.1. Field of View vs. Distance

We studied the relation among translation distance, rota-
tion difference and the resulting FoV overlap measure. For
that, we selected a subset of pairs of the MSLS training set
and measured how the value of the FoV overlap varies with
respect to the position and orientation difference of the im-
age pairs. In Fig. 4a, we plot the relationship between the
translation distance and the value of the FoV overlap. We
observed a somewhat linear relationship between increasing
translation distance and decreasing FoV overlap. Moreover,
many image pairs with FoV overlap of approximately 50%
were taken at a distance of about 25m. The variance ob-
served in Fig. 4a is attributable to the orientation changes.
Indeed, the relation between FoV overlap and orientation
difference is less clear (see Fig. 4b). However, the pairs with
smaller orientation distance tend to have a generally higher
FoV overlap. We plot the relation of the FoV overlap with
both translation and orientation distance in a 3-dimensional
plane in Fig. 4c, and as a heatmap in Fig. 4d. Rotation and
translation distance jointly influence the FoV overlap: the
smaller the translation and orientation distance, the higher
the similarity. Furthermore, the higher one of the distance
measures, the lower the computed FoV overlap, and thus the
annotated ground truth similarity.
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Figure 4. Relation of 2D FoV overlap with translation and orienta-
tion distance (computed using a subset of MSLS validation set).

C. CL vs GCL: comparison of latent space
In Fig. 5, we show the 2D projection of the difference of

the latent space representations of 2000 image pairs (1000
positive and 1000 negative) randomly selected from the
Copenhagen set of the MSLS validation set. For each pair,
we compute the difference between the map and the query
image descriptors. We use this as input to t-SNE [4], which
projects the descriptors onto a 2D space. We visualize the
vectors produced by two models with a ResNet50-GeM back-
bone, one trained using the CL function (Fig. 5a) and the
other using the GCL (Fig. 5b) function. The effect of the pro-
posed GCL function is evident in the better regularized latent
space, where the representation of similar image pairs (blue
dots) are more consistently distributed towards the center of
the space. The representations learned using the CL function,
instead, form a more scattered and noisy distribution.

D. Large-scale VPR: additional results
D.1. RobotCar Seasons v2 and Ext. CMU Seasons

We provide results divided by type of environment for
the Extended CMU dataset in Table 1. We observed that all
models (ours and SoTA) tend to reach a higher performance
on the urban images. This is logical, as they are all trained
on the MSLS dataset with images of mainly urban areas.

We also provide detailed results for the RobotCar Seasons
v2 dataset, organized by weather and illumination conditions,
in Table 2. We observe that all methods obtain a higher
successful localization rate on day conditions, and the GCL-
based methods (especially with a ResNet backbone) tend
to have goof performance on the night-time subsets as well.

(a) ResNet50-GeM-CL (b) ResNet50-GeM-GCL

Figure 5. Visualization of the learned latent space. We selected
1000 random positive pairs and 1000 random negative pairs from
the MSLS Copenhagen set, computed the differences between their
representations and projected them into a 2D space using t-SNE.

Mean Urban Suburban Park

Method 0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

NetVLAD-64 1.3 / 4.5 / 31.9 2.9 / 8.4 / 49.6 0.8 / 3.4 / 29.7 0.3 / 1.6 / 15.2
NetVLAD-64⋆ 3.9 / 12.1 / 58.4 7.6 / 20.3 / 77.2 2.6 / 9.7 / 58.9 1.6 / 6.3 / 37.0
NetVLAD-16 1.7 / 5.5 / 39.1 3.7 / 10.0 / 57.3 1.1 / 4.5 / 38.6 0.4 / 1.9 / 19.8
NetVLAD-16⋆ 4.4 / 13.7 / 61.4 8.4 / 22.1 / 76.9 3.0 / 11.4 / 63.1 1.9 / 7.4 / 41.9

VGG-avg-CL 0.9 / 3.0 / 22.7 2.0 / 5.8 / 39.4 0.6 / 2.3 / 21 0.2 / 0.7 / 6.5
VGG-avg-GCL 2.3 / 7.2 / 43.3 4.7 / 13.0 / 64.3 1.6 / 5.8 / 43.4 0.7 / 2.5 / 19.8
VGG-avg-CL⋆ 2.1 / 6.6 / 34.9 4.4 / 12.3 / 54.1 1.1 / 4.4 / 30.5 0.9 / 3.1 / 19.4
VGG-avg-GCL⋆ 3.7 / 11.2 / 52.5 7.2 / 19.1 / 70.8 2.1 / 8.2 / 50.4 1.8 / 6.2 / 35.1
VGG-GeM-CL 2.8 / 8.6 / 44.5 5.7 / 15.2 / 63.7 1.6 / 6.4 / 44.9 1.1 / 4.2 / 22.8
VGG-GeM-GCL 3.6 / 11.2 / 55.8 6.8 / 18.5 / 73.6 2.5 / 9.2 / 57.3 1.5 / 5.6 / 34.2
VGG-GeM-CL⋆ 4.4 / 13.4 / 56.5 8.4 / 21.5 / 72.1 2.6 / 10 / 55.2 2.3 / 8.7 / 40.8
VGG-GeM-GCL⋆ 5.7 / 17.1 / 66.3 10.4 / 26.8 / 82.2 3.8 / 13.8 / 67.8 2.8 / 10.7 / 46.7

ResNet50-avg-CL 2.6 / 7.8 / 43.4 5.6 / 14.9 / 64.6 1.4 / 5.5 / 42.6 0.8 / 2.9 / 21.1
ResNet50-avg-GCL 3.1 / 9.7 / 55.1 6 / 16.7 / 73.6 2.0 / 7.7 / 56.8 1.2 / 4.7 / 32.5
ResNet50-avg-CL⋆ 4.7 / 13.8 / 50.8 9.5 / 24.1 / 70.5 2.7 / 9.7 / 48.8 2.1 / 7.6 / 31.7
ResNet50-avg-GCL⋆ 5.4 / 16.2 / 66.5 10.2 / 26.5 / 81.8 3.5 / 12.5 / 69.8 2.6 / 9.6 / 45.3
ResNet50-GeM-CL 3.2 / 9.6 / 49.5 6.5 / 17.3 / 70.7 1.9 / 7.0 / 49.3 1.2 / 4.3 / 26.3
ResNet50-GeM-GCL 3.8 / 11.8 / 61.6 7.4 / 19.9 / 79.2 2.4 / 9.4 / 64.8 1.5 / 6.1 / 38.1
ResNet50-GeM-CL⋆ 4.7 / 13.4 / 51.6 9.5 / 23.9 / 73.5 2.8 / 9.6 / 49.7 1.9 / 6.8 / 30.0
ResNet50-GeM-GCL⋆ 5.4 / 16.5 / 69.9 10.1 / 26.3 / 84.5 3.5 / 13.4 / 74.1 2.6 / 9.8 / 48.2

ResNet152-avg-CL 3.0 / 9.2 / 49.9 6.2 / 16.4 / 70.4 1.9 / 6.9 / 48.7 1.0 / 4.1 / 28.9
ResNet152-avg-GCL 3.6 / 11.0 / 61.2 7.0 / 18.9 / 78.8 2.3 / 8.4 / 62.6 1.4 / 5.5 / 39.9
ResNet152-avg-CL⋆ 4.8 / 14.3 / 59.9 9.4 / 24 / 77.3 3.0 / 10.9 / 61 2 / 8 / 39.3
ResNet152-avg-GCL⋆ 5.7 / 17.0 / 66.5 10.8 / 27.3 / 82.0 3.7 / 13.5 / 68.9 2.6 / 10.1 / 46.3
ResNet152-GeM-CL 3.2 / 9.7 / 52.2 6.7 / 17.7 / 73.9 2.1 / 7.3 / 52.8 0.9 / 4.1 / 27.6
ResNet152-GeM-GCL 3.6 / 11.3 / 63.1 6.9 / 18.8 / 79.3 2.5 / 9.0 / 64.3 1.3 / 6.0 / 43.6
ResNet152-GeM-CL⋆ 4.8 / 14.2 / 55.0 9.6 / 24.5 / 75.2 3.0 / 10.5 / 54.3 1.9 / 7.5 / 33.6
ResNet152-GeM-GCL⋆ 5.3 / 16.1 / 66.4 9.9 / 25.8 / 81.6 3.5 / 12.8 / 69.3 2.4 / 9.7 / 46

ResNext-avg-CL 2.0 / 6.1 / 40.0 4.6 / 12.2 / 63.6 1.2 / 4.4 / 38.5 0.3 / 1.7 / 16.0
ResNext-avg-GCL 3.3 / 10.2 / 57.7 6.7 / 17.9 / 77.8 2.1 / 8.1 / 58.1 1.2 / 4.4 / 35.0
ResNext-avg-CL⋆ 4.6 / 13.4 / 58.6 9.3 / 23.2 / 78 2.8 / 10.1 / 59 1.7 / 6.7 / 36.5
ResNext-avg-GCL⋆ 5.6 / 16.6 / 70.7 10.4 / 26.6 / 85.1 3.7 / 13.4 / 73.2 2.6 / 9.8 / 51.6
ResNext-GeM-CL 2.9 / 9.0 / 52.6 5.9 / 15.6 / 70.2 1.7 / 6.8 / 53.0 1.2 / 4.7 / 32.6
ResNext-GeM-GCL 3.5 / 10.5 / 58.8 6.5 / 17.7 / 77.8 2.5 / 8.7 / 59.7 1.3 / 5.0 / 36.6
ResNext-GeM-CL⋆ 4.9 / 14.4 / 61.7 9.4 / 24 / 80.2 3.1 / 11.1 / 63.8 2.2 / 8.0 / 38.6
ResNext-GeM-GCL⋆ 6.1 / 18.2 / 74.9 11.1 / 28.7 / 87.4 4.2 / 14.6 / 77.4 3.1 / 11.1 / 57.7

Table 1. Detailed results on the Extended CMU dataset. The ⋆

denotes the models for which PCA whitening has been applied.

The MSLS train dataset includes images taken at night, al-
though underrepresented, so it is interesting that GCL based
models can localize images under these conditions.



night rain night night all overcast winter sun rain snow dawn dusk overcast summer day all mean

Method 0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

0.25/0.5/10m
2/5/10◦

NetVLAD-64 0.5 / 1.0 / 5.9 0.0 / 0.4 / 4.4 0.2 / 0.7 / 5.1 0.0 / 11.6 / 67.7 0.9 / 4.5 / 28.6 4.4 / 22.0 / 91.2 4.7 / 13.0 / 60.5 3.1 / 8.4 / 32.6 2.5 / 14.2 / 78.7 1.4 / 9.5 / 51.7 2.5 / 11.7 / 57.5 2 / 9.2 / 45.5
NetVLAD-64⋆ 0.0 / 1.5 / 11.8 0.0 / 1.3 / 12.4 0.0 / 1.4 / 12.1 0.0 / 15.2 / 87.2 3.1 / 12.1 / 66.5 8.8 / 35.6 / 99.0 7.0 / 28.4 / 90.2 9.3 / 21.6 / 77.5 4.1 / 25.4 / 98.0 5.2 / 21.3 / 77.7 5.5 / 22.9 / 84.7 4.2 / 18 / 68.1
NetVLAD-16 0.0 / 0.0 / 3.4 0.0 / 0.9 / 5.3 0.0 / 0.5 / 4.4 1.2 / 10.4 / 78.0 0.9 / 6.2 / 33.0 5.9 / 25.4 / 93.7 3.3 / 10.7 / 62.8 1.8 / 6.6 / 29.1 1.5 / 16.2 / 86.8 1.4 / 8.1 / 57.8 2.3 / 11.8 / 61.5 1.8 / 9.2 / 48.4
NetVLAD-16⋆ 0.0 / 0.0 / 1.0 0.0 / 0.9 / 7.1 0.0 / 0.5 / 4.2 1.8 / 19.5 / 90.2 4.9 / 11.6 / 67.4 10.7 / 34.1 / 96.1 6.5 / 24.7 / 89.8 7.9 / 24.2 / 74.4 2.5 / 23.4 / 93.9 7.6 / 24.6 / 77.3 6.2 / 23.1 / 83.6 4.8 / 17.9 / 65.3

VGG-avg-CL 0.0 / 0.0 / 2.5 0.0 / 0.0 / 1.3 0.0 / 0.0 / 1.9 0.0 / 7.9 / 54.9 0.0 / 2.2 / 14.3 4.9 / 23.9 / 85.4 3.3 / 8.8 / 49.8 0.9 / 1.3 / 14.5 0.0 / 12.2 / 66.5 0.0 / 3.3 / 31.8 1.3 / 8.3 / 44.0 1 / 6.4 / 34.4
VGG-avg-GCL 0.0 / 0.5 / 3.9 0.0 / 0.0 / 1.8 0.0 / 0.2 / 2.8 0.6 / 15.2 / 82.9 2.2 / 6.7 / 44.6 7.8 / 31.7 / 95.1 4.2 / 19.5 / 73.0 0.4 / 5.7 / 33.9 2.0 / 21.8 / 86.3 3.8 / 13.7 / 57.8 3.0 / 16.1 / 66.3 2.3 / 12.5 / 51.7
VGG-avg-CL⋆ 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 0.0 / 11.0 / 61.6 0.4 / 4.0 / 20.5 5.9 / 26.3 / 85.4 5.1 / 13.5 / 64.2 3.1 / 8.4 / 40.1 4.1 / 17.3 / 76.6 1.9 / 11.8 / 40.3 3.0 / 13.0 / 54.5 2.3 / 10 / 42
VGG-avg-GCL⋆ 0.0 / 0.0 / 1.0 0.0 / 0.0 / 0.4 0.0 / 0.0 / 0.7 0.6 / 17.1 / 79.3 3.1 / 11.2 / 49.1 9.3 / 34.6 / 97.6 6.5 / 17.7 / 80.0 3.5 / 16.3 / 56.4 5.6 / 25.4 / 90.9 3.8 / 18.0 / 69.7 4.7 / 19.9 / 73.9 3.6 / 15.3 / 57.1
VGG-GeM-CL 0.0 / 0.0 / 2.0 0.0 / 0.4 / 1.8 0.0 / 0.2 / 1.9 0.0 / 14.6 / 80.5 2.2 / 6.7 / 45.5 8.3 / 31.2 / 94.1 6.0 / 20.0 / 77.7 3.5 / 11.5 / 47.1 2.0 / 17.8 / 89.8 4.7 / 18.0 / 68.2 4.0 / 17.0 / 70.8 3.1 / 13.2 / 55
VGG-GeM-GCL 0.0 / 0.5 / 7.4 0.0 / 0.0 / 0.9 0.0 / 0.2 / 4.0 0.6 / 16.5 / 82.3 2.2 / 11.6 / 61.2 10.2 / 38.0 / 99.0 7.9 / 23.3 / 83.7 2.6 / 11.5 / 51.1 2.0 / 22.3 / 90.9 7.1 / 20.9 / 70.6 4.8 / 20.4 / 76.2 3.7 / 15.8 / 59.7
VGG-GeM-CL⋆ 0.0 / 0.5 / 2.0 0.0 / 0.0 / 0.0 0.0 / 0.2 / 0.9 0.6 / 18.9 / 84.8 2.7 / 13.4 / 60.3 8.3 / 36.6 / 98.5 8.4 / 27.0 / 85.1 6.6 / 22.5 / 70.5 5.6 / 29.9 / 95.9 4.7 / 21.3 / 74.9 5.4 / 24.2 / 80.8 4.2 / 18.7 / 62.5
VGG-GeM-GCL⋆ 0.5 / 1.0 / 6.4 0.0 / 1.3 / 6.6 0.2 / 1.2 / 6.5 1.2 / 23.2 / 90.9 6.7 / 21.4 / 78.1 11.2 / 42.4 / 100.0 9.3 / 32.6 / 95.3 7.5 / 20.7 / 76.7 4.6 / 28.9 / 97.5 6.2 / 27.0 / 79.6 6.9 / 28.0 / 87.9 5.4 / 21.9 / 69.2

ResNet50-avg-CL 0.5 / 1.0 / 9.4 0.4 / 2.2 / 11.1 0.5 / 1.6 / 10.3 0.0 / 13.4 / 71.3 1.8 / 6.2 / 30.4 8.8 / 32.7 / 97.6 5.6 / 18.6 / 64.7 4.4 / 15.4 / 53.7 3.0 / 14.7 / 79.2 2.8 / 10.4 / 51.7 3.9 / 15.9 / 63.1 3.1 / 12.6 / 51
ResNet50-avg-GCL 1.0 / 2.0 / 12.8 0.4 / 1.3 / 8.4 0.7 / 1.6 / 10.5 0.6 / 18.3 / 80.5 1.3 / 6.7 / 43.8 8.3 / 34.1 / 96.1 4.7 / 15.3 / 72.6 2.6 / 11.0 / 51.1 2.0 / 16.2 / 88.8 4.3 / 14.2 / 64.0 3.5 / 16.3 / 69.9 2.9 / 12.9 / 56.3
ResNet50-avg-CL⋆ 0.0 / 0.0 / 3.0 0.0 / 0.4 / 1.8 0.0 / 0.2 / 2.3 2.4 / 26.2 / 89.6 3.6 / 14.3 / 53.1 14.6 / 45.4 / 98.0 8.4 / 30.7 / 84.2 10.1 / 31.7 / 75.3 5.6 / 24.9 / 93.4 7.6 / 33.6 / 76.8 7.6 / 29.5 / 80.7 5.9 / 22.8 / 62.7
ResNet50-avg-GCL⋆ 0.0 / 1.0 / 6.4 0.4 / 0.4 / 10.2 0.2 / 0.7 / 8.4 3.0 / 28.0 / 98.2 4.0 / 15.6 / 68.8 13.2 / 41.5 / 97.6 8.4 / 31.2 / 87.9 8.4 / 30.4 / 84.1 5.6 / 27.9 / 96.4 9.5 / 33.6 / 86.3 7.6 / 29.7 / 87.8 5.9 / 23.1 / 69.6
ResNet50-GeM-CL 0.5 / 1.5 / 11.8 0.4 / 1.3 / 8.0 0.5 / 1.4 / 9.8 0.0 / 16.5 / 82.9 0.9 / 9.8 / 61.2 9.8 / 33.7 / 97.1 5.6 / 23.7 / 81.4 3.1 / 15.0 / 62.6 1.5 / 19.8 / 93.4 6.2 / 18.5 / 64.9 4.0 / 19.5 / 76.9 3.2 / 15.4 / 61.5
ResNet50-GeM-GCL 0.5 / 2.0 / 9.9 0.0 / 1.3 / 11.9 0.2 / 1.6 / 11.0 1.8 / 21.3 / 84.8 1.8 / 10.3 / 47.3 8.8 / 33.7 / 97.1 5.1 / 18.1 / 80.9 1.8 / 8.8 / 49.8 2.0 / 17.8 / 91.9 4.7 / 16.6 / 69.7 3.7 / 17.7 / 73.4 2.9 / 14 / 58.8
ResNet50-GeM-CL⋆ 0.5 / 0.5 / 3.9 0.0 / 0.4 / 2.7 0.2 / 0.5 / 3.3 3.0 / 28.0 / 95.1 2.2 / 13.8 / 56.7 9.8 / 37.6 / 98.5 8.4 / 32.6 / 94.0 7.0 / 23.8 / 83.7 5.6 / 24.9 / 94.4 8.1 / 30.8 / 79.6 6.4 / 27.2 / 85.3 5 / 21.1 / 66.5
ResNet50-GeM-GCL⋆ 0.0 / 0.0 / 8.4 0.0 / 0.0 / 9.3 0.0 / 0.0 / 8.9 3.0 / 25.6 / 95.7 3.1 / 14.7 / 69.2 9.3 / 34.6 / 98.0 6.5 / 28.4 / 90.7 9.3 / 28.6 / 86.3 3.6 / 25.9 / 96.4 7.1 / 26.1 / 83.9 6.1 / 26.2 / 88.1 4.7 / 20.2 / 70

ResNet152-avg-CL 0.0 / 0.0 / 8.4 0.0 / 0.0 / 8.0 0.0 / 0.0 / 8.2 1.2 / 17.1 / 86.0 1.8 / 11.2 / 51.3 6.8 / 34.1 / 92.7 4.7 / 15.8 / 74.0 2.6 / 11.9 / 53.3 3.0 / 17.3 / 82.7 2.4 / 13.3 / 64.0 3.3 / 17.0 / 71.0 2.5 / 13.1 / 56.6
ResNet152-avg-GCL 0.0 / 1.5 / 11.3 0.4 / 0.4 / 10.2 0.2 / 0.9 / 10.7 1.8 / 20.1 / 90.2 3.6 / 8.5 / 52.7 9.3 / 29.3 / 95.6 4.7 / 19.1 / 84.2 2.6 / 12.8 / 47.6 3.0 / 16.8 / 88.8 4.3 / 16.1 / 70.6 4.2 / 17.3 / 74.5 3.3 / 13.5 / 59.9
ResNet152-avg-CL⋆ 3.0 / 10.9 / 61.0 4.3 / 13.6 / 57.6 9.4 / 24.0 / 77.3 2.0 / 8.0 / 39.3 5.1 / 14.0 / 60.8 4.9 / 14.2 / 58.1 4.8 / 14.1 / 59.8 4.5 / 13.3 / 55.1 5.3 / 17.0 / 69.7 3.6 / 12.3 / 53.7 5.5 / 16.2 / 67.2 5.4 / 22.2 / 64.8
ResNet152-avg-GCL⋆ 3.7 / 13.5 / 68.9 5.3 / 16.6 / 65.0 10.8 / 27.3 / 82.0 2.6 / 10.1 / 46.3 6.1 / 16.7 / 68.2 5.7 / 16.8 / 63.1 5.6 / 16.4 / 65.0 5.7 / 16.4 / 63.9 6.1 / 19.6 / 74.9 4.3 / 14.6 / 61.6 6.2 / 18.5 / 73.6 6.2 / 23.9 / 70
ResNet152-GeM-CL 2.1 / 7.3 / 52.8 3.0 / 9.8 / 53.9 6.7 / 17.7 / 73.9 0.9 / 4.1 / 27.6 3.2 / 8.9 / 52.2 3.3 / 9.2 / 47.4 3.1 / 8.9 / 47.9 3.3 / 9.9 / 53.0 3.4 / 11.5 / 61.0 1.9 / 7.9 / 45.6 3.7 / 11.0 / 56.3 3.3 / 15.2 / 64
ResNet152-GeM-GCL 2.5 / 9.0 / 64.3 3.3 / 11.0 / 63.8 6.9 / 18.8 / 79.3 1.3 / 6.0 / 43.6 4.1 / 11.4 / 62.9 3.5 / 11.2 / 58.9 3.5 / 10.8 / 60.1 3.7 / 11.2 / 62.9 3.6 / 12.6 / 70.4 2.5 / 9.4 / 58.9 3.8 / 11.9 / 68.4 2.9 / 13.1 / 63.5
ResNet152-GeM-CL⋆ 3.0 / 10.5 / 54.3 4.4 / 13.6 / 53.2 9.6 / 24.5 / 75.2 1.9 / 7.5 / 33.6 4.9 / 13.4 / 53.9 5.0 / 14.1 / 53.5 4.9 / 13.7 / 54.6 4.4 / 12.9 / 50.0 5.6 / 17.5 / 65.6 3.9 / 12.5 / 47.1 5.5 / 15.9 / 62.2 6.1 / 23.5 / 68.9
ResNet152-GeM-GCL⋆ 3.5 / 12.8 / 69.3 4.8 / 16.0 / 65.4 9.9 / 25.8 / 81.6 2.4 / 9.7 / 46.0 5.6 / 15.6 / 67.0 5.3 / 15.5 / 62.8 5.2 / 15.2 / 64.7 5.1 / 15.6 / 63.7 5.7 / 19.5 / 75.8 4.0 / 14.8 / 62.3 6.1 / 17.9 / 74.0 6 / 21.6 / 72.5

ResNext-avg-CL 1.0 / 3.4 / 29.1 0.0 / 1.3 / 15.5 0.5 / 2.3 / 21.9 1.2 / 12.8 / 86.0 1.3 / 4.9 / 55.8 6.8 / 20.5 / 97.6 6.5 / 16.7 / 80.0 2.2 / 9.7 / 44.5 2.5 / 17.8 / 84.8 2.8 / 13.3 / 66.8 3.4 / 13.5 / 72.6 2.7 / 10.9 / 61
ResNext-avg-GCL 0.0 / 0.5 / 11.8 0.0 / 0.9 / 15.9 0.0 / 0.7 / 14.0 1.2 / 19.5 / 91.5 2.7 / 8.9 / 60.3 6.8 / 25.4 / 96.6 4.2 / 15.3 / 78.1 2.6 / 11.9 / 63.4 2.5 / 16.2 / 93.9 4.3 / 15.6 / 66.8 3.5 / 15.9 / 77.7 2.7 / 12.4 / 63.1
ResNext-avg-CL⋆ 1.0 / 1.5 / 12.3 0.0 / 0.9 / 12.8 0.5 / 1.2 / 12.6 0.6 / 25.6 / 97.6 4.9 / 17.0 / 79.9 9.3 / 35.1 / 99.0 8.4 / 29.8 / 93.0 7.0 / 23.8 / 72.7 5.6 / 24.9 / 94.4 5.7 / 27.0 / 82.9 6.1 / 26.1 / 87.9 4.8 / 20.4 / 70.6
ResNext-avg-GCL⋆ 1.0 / 3.4 / 29.1 0.0 / 1.3 / 15.5 0.5 / 2.3 / 21.9 1.2 / 12.8 / 86.0 1.3 / 4.9 / 55.8 6.8 / 20.5 / 97.6 6.5 / 16.7 / 80.0 2.2 / 9.7 / 44.5 2.5 / 17.8 / 84.8 2.8 / 13.3 / 66.8 3.4 / 13.5 / 72.6 2.7 / 10.9 / 61
ResNext-GeM-CL 0.0 / 1.5 / 6.9 0.0 / 0.4 / 8.0 0.0 / 0.9 / 7.5 0.0 / 17.1 / 82.3 1.3 / 5.4 / 56.7 3.9 / 20.5 / 96.6 3.7 / 12.6 / 74.9 2.2 / 7.0 / 29.5 2.0 / 21.3 / 90.4 2.8 / 11.4 / 60.7 2.4 / 13.2 / 68.9 1.9 / 10.4 / 54.8
ResNext-GeM-GCL 0.0 / 2.5 / 22.2 0.4 / 1.3 / 19.9 0.2 / 1.9 / 21.0 1.2 / 15.2 / 84.8 0.9 / 7.6 / 68.8 7.3 / 28.3 / 98.5 5.1 / 20.0 / 84.2 2.2 / 11.0 / 55.5 4.1 / 20.8 / 90.9 3.3 / 16.1 / 71.6 3.5 / 16.8 / 78.4 2.7 / 13.4 / 65.2
ResNext-GeM-CL⋆ 0.5 / 2.5 / 10.3 0.0 / 0.0 / 11.9 0.2 / 1.2 / 11.2 1.8 / 20.1 / 92.1 4.9 / 15.6 / 79.0 7.8 / 31.2 / 100.0 7.0 / 26.0 / 93.0 3.5 / 15.0 / 67.0 4.6 / 26.9 / 95.9 3.8 / 19.4 / 73.0 4.9 / 21.9 / 85.1 3.8 / 17.2 / 68.2
ResNext-GeM-GCL⋆ 2.5 / 5.4 / 38.4 1.8 / 3.5 / 28.3 2.1 / 4.4 / 33.1 1.2 / 26.8 / 93.9 3.6 / 15.2 / 77.2 9.8 / 40.0 / 98.5 7.9 / 29.3 / 91.2 4.8 / 19.8 / 82.4 5.1 / 25.9 / 92.9 5.7 / 26.1 / 76.8 5.5 / 25.9 / 87.1 4.7 / 21 / 74.7

Table 2. Detailed results on the RobotCar Seasons v2 dataset, divided by wheather and ilumination conditions. The symbol ⋆ denotes the
models for which PCA whitening has been applied.

D.2. Results on Pittsburgh250k and TokyoTM

We evaluated the generalization of our models trained on
MSLS to the Pittsburgh250k [11] and TokyoTM [1] datasets.
The test set of the former consists of 83k map and 8k query
images taken over the span of several years in Pittsburgh,
Pennsylvania, USA. The TokyoTM dataset consists of im-
ages collected using the Time Machine tool on Google Street
View in Tokyo over several years. Its validation set is divided
into a map and a query set, with 49k and 7k images.

The results (see Table 3) are in line with those reported
in the main paper. Our models trained with a GCL function
generalize better to unseen datasets than their counterpart
trained with a binary Contrastive Loss. Their performance is
further boosted if PCA whitening is applied, up to a top-5
recall of 93.7% on Pittsburgh250k and 96.7% on TokyoTM.

E. Additional ablations

E.1. Average pooling and PCA

In addition to using GeM, we trained the considered back-
bones (i.e. VGG16, ResNet50, ResNet152 and ResNeXt)
using a Global Average Pooling layer on the MSLS dataset.
We show the results in Table 4. We observed that our method
can reach good results also with a simple pooling layer, al-
though a GeM layer usually leads to better results (see main
paper). Our methods reach good results on the validation and
test sets of MSLS and generalizes well to unseen datasets

Pittsburgh250k TokyoTM
Method PCAw Dim R@1 R@5 R@10 R@1 R@5 R@10

VGG-avg-CL No 512 20.2 38.0 47.2 38.9 58.5 67.2
VGG-avg-GCL No 512 32.1 53.4 62.7 65.6 80.8 85.2
VGG-avg-CL Yes 128 39.3 58.9 67.4 66.0 80.3 85.0
VGG-avg-GCL Yes 256 51.3 71.0 78.0 78.6 87.7 90.8
VGG-GeM-CL No 512 44.5 63.1 70.1 67.7 80.8 85.0
VGG-GeM-GCL No 512 53.3 72.4 79.2 75.5 85.4 88.6
VGG-GeM-CL Yes 512 65.1 81.2 85.8 83.7 91.1 93.3
VGG-GeM-GCL Yes 512 73.4 86.4 89.9 88.2 93.2 94.7

ResNet50-avg-CL No 2048 45.1 65.8 73.6 69.7 83.0 87.5
ResNet50-avg-GCL No 2048 56.2 77.1 83.8 72.3 84.8 88.4
ResNet50-avg-CL Yes 2048 70.6 85.4 89.5 90.5 94.8 96.0
ResNet50-avg-GCL Yes 1024 74.6 87.9 91.6 91.7 95.7 96.8
ResNet50-GeM-CL No 2048 54.8 74.2 80.7 73.3 85.4 89.2
ResNet50-GeM-GCL No 2048 68.2 84.6 89.2 80.1 88.8 91.6
ResNet50-GeM-CL Yes 1024 72.4 86.6 90.4 88.7 93.9 95.4
ResNet50-GeM-GCL Yes 1024 80.9 91.4 94.3 92.2 95.6 96.8

ResNet152-avg-CL No 2048 51.3 73.0 80.1 73.5 86.4 89.9
ResNet152-avg-GCL No 2048 64.0 83.6 89.2 78.9 89.0 91.9
ResNet152-avg-CL Yes 1024 69.6 85.9 90.6 90.7 95.1 96.3
ResNet152-avg-GCL Yes 2048 80.9 92.2 95.3 94.0 96.7 97.3
ResNet152-GeM-CL No 2048 60.7 79.0 85.1 77.8 88.3 91.2
ResNet152-GeM-GCL No 2048 68.0 84.9 89.8 81.5 90.3 92.8
ResNet152-GeM-CL Yes 2048 76.2 89.9 93.4 91.1 95.3 96.4
ResNet152-GeM-GCL Yes 2048 83.8 93.7 96.1 93.1 96.1 96.8

ResNeXt-avg-CL No 2048 44.2 65.8 73.9 69.0 82.3 86.3
ResNeXt-avg-GCL No 2048 57.9 76.1 82.6 77.7 86.9 89.7
ResNeXt-avg-CL Yes 1024 69.6 85.4 89.8 88.9 94.1 95.6
ResNeXt-avg-GCL Yes 1024 74.7 88.0 91.7 89.6 94.6 95.9
ResNeXt-GeM-CL No 2048 50.2 70.8 78.8 66.1 78.5 82.7
ResNeXt-GeM-GCL No 2048 58.6 76.2 81.8 78.7 87.1 90.1
ResNeXt-GeM-CL Yes 1024 70.3 85.2 89.6 87.2 93.1 94.5
ResNeXt-GeM-GCL Yes 1024 78.2 90.1 93.1 91.8 95.4 96.6

Table 3. Generalization results of the models trained on the MSLS
dataset for the Pittsburgh250k and TokyoTM benchmarks.

such as Pittsburgh30k [1], Tokyo24/7 [1], RobotCar Seasons
V2 [7] and Extended CMU Seasons [7]. As we observed also



MSLS-Val MSLS-Test Pittsburgh30k Tokyo24/7 RobotCar Seasons V2 Extended CMU Seasons
Method PCAw Dim R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 0.25m/2◦ 0.5m/5◦ 5.0m/10◦ 0.25m/2◦ 0.5m/5◦ 5.0m/10◦

VGG-avg-CL No 512 28.8 47.0 53.9 16.9 30.5 36.4 28.9 53.7 64.8 10.5 24.1 35.6 1.0 6.4 34.4 0.9 3.0 22.7
VGG-avg-GCL No 512 48.8 67.8 73.1 21.5 31.4 37.9 42.1 66.9 77.3 20.0 42.5 52.1 2.3 12.5 51.7 2.3 7.2 43.3
VGG-avg-CL Yes 128 35.0 53.4 60.1 35.2 47.3 54.1 47.1 69.5 78.3 16.2 28.9 40.0 2.3 10.0 42.0 2.1 6.6 34.9
VGG-avg-GCL Yes 256 54.5 72.6 78.2 32.9 49.0 56.5 56.2 76.7 83.9 28.6 45.7 54.9 3.6 15.3 57.1 3.7 11.2 52.5

ResNet50-avg-CL No 2048 44.3 60.3 65.9 24.9 39.0 44.6 54.0 75.7 83.1 20.6 40.0 50.2 3.1 12.6 51.0 2.6 7.8 43.4
ResNet50-avg-GCL No 2048 59.6 72.3 76.2 35.8 52.0 59.0 62.5 82.7 88.4 24.1 44.1 54.6 2.9 12.9 56.3 3.1 9.7 55.1
ResNet50-avg-CL Yes 2048 58.8 71.4 75.8 33.1 46.5 53.3 65.8 82.6 88.2 48.6 63.2 70.5 5.9 22.8 62.7 4.7 13.8 50.8
ResNet50-avg-GCL Yes 1024 69.5 81.2 85.5 44.2 57.8 63.4 73.3 87.1 91.2 52.1 68.9 72.7 5.9 23.1 69.6 5.4 16.2 66.5

ResNet152-avg-CL No 2048 53.1 70.1 75.4 29.7 44.2 51.3 59.7 80.3 87.0 27.0 48.6 58.4 2.5 13.1 56.6 3.0 9.2 49.9
ResNet152-avg-GCL No 2048 65.1 80.0 83.8 43.5 59.2 65.2 69.3 87.2 91.3 32.1 52.1 62.2 3.3 13.5 59.9 3.6 11.0 61.2
ResNet152-avg-CL Yes 1024 63.0 77.7 81.5 37.7 51.6 56.9 68.8 85.9 90.4 49.8 67.3 74.3 5.4 22.2 64.8 4.8 14.3 59.9
ResNet152-avg-GCL Yes 2048 75.8 87.4 89.7 52.7 68.1 74.2 77.9 90.4 93.5 64.4 77.8 83.2 6.2 23.9 70.0 5.7 17.0 66.5

ResNeXt-avg-CL No 2048 58.9 75.1 79.9 34.5 50.1 57.7 51.3 73.6 81.9 24.8 47.3 56.8 2.7 10.9 61.0 2.0 6.1 40.0
ResNeXt-avg-GCL No 2048 72.2 85.1 87.3 51.5 66.9 71.7 62.9 81.0 87.1 39.4 58.1 68.9 2.7 12.4 63.1 3.3 10.2 57.7
ResNeXt-avg-CL Yes 1024 71.6 84.7 88.0 46.5 62.9 68.9 69.2 85.3 89.6 44.8 63.5 73.6 4.8 20.4 70.6 4.6 13.4 58.6
ResNeXt-avg-GCL Yes 1024 79.3 89.2 90.3 57.8 72.3 77.1 74.8 88.2 91.8 53.0 76.2 80.6 2.7 10.9 61.0 5.6 16.6 70.7

Table 4. Ablation study: all the models are trained on the MSLS train set and deploy a global average pooling layer. When PCA whitening is
applied we report the descriptor size that achieves the best results on the MSLS validation set.

with the GeM models, the Global Average Pooling models
achieve better performance when PCA whitening is applied,
up to a 72.3% top-5 recall on the test set of MSLS.

E.2. Composition of training batches.

Effective composition of training batches is important
for the performance of VPR methods, as witnessed by the
fact that existing methods deploy very expensive pair mining
techniques to select samples that effectively contributes to
training. Although we do not use pair mining, we studied the
impact on the retrieval performance by constructing batches
with image pairs that have different degrees of similarity. We
consider four strategies. Strategy A includes 50% positive
(ψ ∈ [0.5, 1]), 25% soft-negative (ψ ∈ (0, 0.5)) and 25%
hard-negative (ψ = 0) pairs in each batch. For Strategy
B, the batches contain an uniform distribution of pairs with
different similarity, namely 25% of pairs with ψ ∈ [0.75, 1],
25% with ψ ∈ [0.5, 0.75), 25% with ψ ∈ (0, 0.5) and 25%
with ψ = 0. For strategy C, we compose the batches with
33.3% of pairs with ψ ∈ [0.5, 1], 33.3% with ψ ∈ (0, 0.5)
and 33.3% with ψ = 0. Finally, for strategy D we include
50% of pairs with ψ ∈ [0.5, 1] and 50% with ψ ∈ [0, 0.5).
Histograms of the distributions of similarity in the batches
are shown in Figure 6. The most important aspect of com-
posing the training batches is to select an adequate number
of soft negative pairs (see Table 5), i.e. at least 25% of the
pairs have similarity ψ ∈ (0, 0.5), as done for strategy A, B
and C. For the main experiments, we used strategy A.

F. Results on the TB-Places dataset

The dataset TB-Places was designed for place recognition
in garden [2, 3]. It contains images taken by a rover robot
in a garden at the University of Wageningen, the Nether-
lands, over three years. The dataset was collected for the

0.00 0.25 0.50 0.75 1.00
FoV overlap

101

102

103

#
 P

ai
rs

0.00 0.25 0.50 0.75 1.00
FoV Overlap

101

102

103

#
 P

ai
rs

0.00 0.25 0.50 0.75 1.00
FoV Overlap

101

102

103

#
 P

ai
rs

0.00 0.25 0.50 0.75 1.00
FoV Overlap

100

101

102

103

#
 P

ai
rs

Figure 6. Similarity ground truth distribution for 10000 randomly
selected pairs in the MSLS train set when using different batch
composition strategies. The vertical axis is in log scale.

TrimBot2020 project [9]. It includes drastic viewpoint varia-
tions, as well as illumination changes. The garden is a very
challenging small environment with repetitive textures.

The dataset consists of three subsets, i.e. W16, with
41k images taken in 2016; W17, with 11k images taken
in 2017; and W18, with 23k images taken in 2018. As
in [3] we use the W17 subset to train the models. We design
two experiments. For the first one we use W17 as map
(11k images) and W18 as query (23k images). With this
configuration we test the robustness of our models w.r.t.
changes between the map and the query sets. For the second
experiment, we divide W18 into query (17k images) and
map (6k images) to test the generalization capabilities of our
models in the case both map and query sets were not used
for training. In Fig. 7, we show a sketch of the trajectory



Model Set Strategy
A B C D

VGG-GeM-GCL Validation 77.8 78.8 78.2 73.4
Test 55.7 54.9 56 49.3

ResNet50-GeM-GCL Validation 78.9 76.5 75.7 75.4
Test 59.1 54.5 52.4 54.7

ResNet152-GeM-GCL Validation 82 80.4 78.6 78.5
Test 62.3 59.7 58.4 64.8

ResNeXt-GeM-GCL Validation 86.1 86.2 87.3 81.9
Test 70.8 70.7 72.4 64.8

Table 5. Results (R@5) on the MSLS validation and test sets, using
different training batch composition strategies.

Map: W17, Query: W18

Query
Map

Map: W18, Query: W18

Query
Map

Figure 7. Configurations of the experiments on the TB-Places
dataset. (a) W17 subset is the map set, and W18 is the query. (b)
We divide W18 into map and query. For visualization purposes, the
trajectories have been downsampled.

that the robot covered for the recording of the reference map
(blue trajectory) and query (orange trajectory) images. The
query images were taken from locations not covered by map
images, thus including substantial viewpoint variations.

Experiments and results We trained our method on the
TB-Places dataset and show the results in Fig. 8. We con-
sidered three backbones, namely ResNet18, ResNet34, and
DenseNet161, which learn descriptors of size 512, 512 and
2208, respectively. We trained them with the binary Con-
trastive Loss function and with our Generalized Contrastive
Loss function. Furthermore, we compare them with the
NetVLAD off-the-shelf model. For these experiments we
use only a Global Average Pooling.

We report results of two experiments. For the first one,
we used the training set W17 as map, and the W18 set as
query. With this experiment we tested the strength of the
descriptors against significant variations between the query
and the map set. We show the results in Fig. 8a. For the

ResNet18-CL ResNet18-GCL (ours)
ResNet34-CL ResNet34-GCL (ours)

DenseNet161-CL DenseNet161-GCL (ours)
NetVLAD off-the-shelf
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(b) Map: W18, Query: W18

Figure 8. Results on the TB-Places dataset. In (a) the results when
using W17 as map and W18 as query set. In (b) the top-k recall
achieved when dividing W18 into map and query.

second experiment, we divided the W18 set into map and
query, to test the generalization capabilities when both map
and query sets are unknown to the place recognition model
(i.e. not seen during training). The results are displayed
in Fig. 8b. For both experiments the models trained with
GCL and the proposed similarity ground truth consistently
achieve better recall than the ones trained with the binary
Contrastive Loss, with the exception of the ResNet18.

G. Results on the 7Scenes dataset
The dataset A benchmark dataset for indoor camera lo-
calization [8]. It includes 26k training images and 17k test
images, taken in seven environments. Each image has an
associated ground truth 6DOF camera pose. Additionally, a
3D reconstruction of each scene is available. We use it to
test our VPR models in indoor environments. For evaluation
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Figure 9. Recall@K results achieved on the 7 Scenes dataset. The results of the models trained with our Generalized Contrastive Loss are
shown in red, while those of the models trained with the binary Contrastive Loss are shown in blue. The Recall@K achieved by NetVLAD
off-the-shelf is plotted in black.

purposes, we define an image pair as a positive match if their
annotated degree of similarity is higher than 50%. We use
the training set as map, and the test set as query.

Experiments and results We report the results in Fig. 9.
We used the ResNet18 and ResNet34 architectures as back-
bones with a Global Average Pooling layer and we compare
them to NetVLAD off-the-shelf. We achieved generally
higher Recall@K results for the models trained using the
GCL function, for all scenes. The cases of the stairs (Fig. 9b),
chess (Fig. 9f) and office (Fig. 9g) scenes are particularly
interesting, since with the GCL descriptors we are able to
retrieve positive matches for nearly all the query images,
with a top-5 recall for ResNet34-GCL of 98.1%, 98.2% and
99.7%, respectively.

Furthermore, we report the average precision results in
Table 6. The models trained with the GCL function achieved
higher AP than their corresponding models trained with the
binary CL function. We achieved an average AP equal to
0.89 using the ResNet34-GCL model.

H. GCL vs CL: Activation maps

In Fig. 10, we show the activation maps of the last con-
volutional layer of our models with a VGG16-GeM and
a ResNet50-GeM backbone, both trained using the Con-
trastive Loss function (CL) and the proposed Generalized

NetVLAD ResNet18 ResNet34

Scene off-the-shelf CL GCL CL GCL

Heads 0.587 0.739 0.807 0.759 0.853
Stairs 0.533 0.855 0.883 0.884 0.944
Pumpkin 0.491 0.768 0.849 0.782 0.914
Fire 0.539 0.786 0.811 0.796 0.803
Redkitchen 0.439 0.790 0.876 0.782 0.902
Chess 0.645 0.943 0.964 0.945 0.974
Office 0.399 0.794 0.890 0.802 0.896

Mean 0.519 0.811 0.868 0.821 0.898

Table 6. Average Precision results obtained by the networks trained
with the proposed Generalized Contrastive loss function on the
7Scenes dataset, compared with those achieved by the same net-
work architectures trained using the binary Contrastive loss function
and by the NetVLAD off-the-shelf model.

Contrastive Loss (GCL) function. We selected two exam-
ple image pairs from the MSLS test set [12] (Kampala and
Stockholm), one from the Pittsburgh30k test set [1], and
one from the Tokyo 24/7 dataset [10]. For all cases, we
observed that the model trained with the GCL function pro-
duces higher activation for the common visual features of
the images, and lower for the irrelevant parts (i.e. the road
or the sky), in contrast to the model trained with the binary
CL, which focuses less in the concerned areas of the pictures.
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Figure 10. CNN activations for the ResNet50-GeM and the VGG16-GeM models with CL and GCL for several input image pairs. The first
two pairs, corresponding to the first four columns, are part of the MSLS test set. The third and fourth belong to the Pittsburgh30k and Tokyo
24/7 test set, respectively. We show the activations for the last layer of the backbone overlapped with the input images.



In the example from Stockholm we can observe that our
model does not respond to the cars (which vary from pic-
ture to picture), while it does respond strongly to the cranes
(which are a longer-term cue). The example from Tokyo
24/7 is also particularly interesting: our model trained with
the GCL function has high responses on the common parts
of the images even under big changes of illumination. We
observed that ResNet architectures tend to produce a peak of
activation on the top left corner of the images. This does not
seem to occur with the VGG architecture, so our intuition is
that this artifact is due to the residual computation.

I. Gradient of the Generalized Contrastive Loss
Let us consider two input images xi and xj , their latent

representations f̂(xi) and f̂(xj), and define d(xi, xj) the
Euclidean distance between the representations, such as:

d(xi, xj) =
∥∥∥f̂(xi)− f̂(xj)

∥∥∥
2

For simplicity of notation, hereinafter we refer to d(xi, xj)
as d.

I.1. Contrastive loss

The Contrastive Loss function is defined as:

LCL =

{
1
2d

2, if y = 1
1
2 max(τ − d, 0)2, if y = 0

where y corresponds to the binary ground truth label and τ
corresponds to the margin.
In order to compute the gradient for this function, we con-
sider three cases, depending on the ground truth label y and
the value of the distance d.
Case 1) y = 1
The loss function becomes:

LCL =
1

2
d2

and its derivative with respect to d is:

∇LCL =
∂

∂d
(LCL) =

∂

∂d

(
1

2
d2
)

= d

Case 2) y = 0, d < τ The loss function becomes:

LCL =
1

2
(τ − d)2

and its derivative with respect to d is:

∇LCL =
∂

∂d
(LCL) =

∂

∂d

[
1

2
(τ − d)2

]
= (τ − d)(−1) = d− τ

Case 3) y = 0, d ≥ τ

LCL = 0

and the gradient LCL = 0 as well. Thus, case 2 and case 3,
for y = 0, can be grouped as:

∇LCL =

{
d− τ, if d < τ

0, if d ≥ τ

and simplified as:

∇LCL = min(d− τ, 0)

Finally, the gradient of the Contrastive Loss function is:

∇LCL =

{
d, if y = 1

min(d− τ, 0), if y = 0

I.2. Generalized Contrastive loss

We defined the Generalized Contrastive Loss function as:

LGCL = ψi,j ·
1

2
d2 + (1− ψi,j) ·

1

2
max(τ − d, 0)2

where ψi,j is the ground truth degree of similarity between
the input images xi and xj , and its values are in the interval
[0, 1]. To compute the gradient of the GCL function we
consider two cases, namely when 1) the distance d between
the representations is lower than the margin τ and 2) the
alternative case when d is larger than τ .
Case 1) d < τ The Generalized Contrastive loss function
becomes:

LGCL = ψi,j ·
1

2
d2 + (1− ψi,j) ·

1

2
(τ − d)2

and its derivative with respect to d is:

∇LGCL =
∂

∂d

[
ψi,j ·

1

2
d2 + (1− ψi,j) ·

1

2
(τ − d)2

]
=

= ψi,j · d+ (1− ψi,j)(τ − d)(−1) =

= ψi,j · d+ d− τ − ψi,j · d+ ψi,j · τ =

= d+ τ(ψi,j − 1)

Case 2) d ≥ τ
The Generalized Contrastive loss function becomes:

LGCL = ψi,j ·
1

2
d2 + (1− ψi,j) ·

1

2
(0)2 = ψi,j ·

1

2
d2

and its derivative with respect to d is:

∇LGCL =
∂

∂d
LGCL =

∂

∂d

[
ψi,j ·

1

2
d2
]
= d · ψi,j

Finally, the gradient of the Generalized Contrastive Loss
function is:

∇LGCL =

{
d+ τ(ψi,j − 1), if d < τ

d · ψi,j , if d ≥ τ
(1)
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