
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation
– Supplementary Materials –

Zhen Li* Zuo-Liang Zhu* Ling-Hao Han Qibin Hou Chun-Le Guo† Ming-Ming Cheng
VCIP, CS, Nankai University

{zhenli1031, nkuzhuzl}@gmail.com, lhhan@mail.nankai.edu.cn

{houqb, guochunle, cmm}@nankai.edu.cn

Correlation encoder

C
on

v 
7x

7 
(3

2)

R
es

. B
lo

ck
 (3

2)

R
es

. B
lo

ck
 (3

2)

R
es

. B
lo

ck
 (6

4)

R
es

. B
lo

ck
 (6

4)

R
es

. B
lo

ck
 (9

6)

R
es

. B
lo

ck
 (9

6)

C
on

v 
3x

3 
(8

4)

C
on

v 
3x

3 
(2

0)

C
on

v 
3x

3 
(3

2)
Context encoder

C
on

v 
3x

3 
(2

0)

C
on

v 
3x

3 
(3

2)

C
on

v 
3x

3 
(4

4)

C
on

v 
3x

3 
(4

4)

C
on

v 
3x

3 
(5

6)

C
on

v 
3x

3 
(5

6)

IF
R
Bl
oc
k
(4
4+
4)

𝐼!, 𝐼"

𝑋!#, 𝑋"#

𝐼!, 𝐼"

𝑋!$, 𝑋"$ 𝑋!", 𝑋""

𝐹%→!" , 𝐹%→""

𝑋%"
𝐠!, 𝐠"

Update block

C
on

v 
3x

3 
(6

4)
C

on
v 

7x
7 

(4
0) C

on
v 

3x
3 

(7
6)

C
on

v 
3x

3 
(7

6) C
on

v 
3x

3 
(4

)

C
on

v 
3x

3 
(7

6)

C
on

v 
3x

3 
(C
di
m

)

C
on

v 
3x

3 
(7

6)

Corr

Flow

C
on

v 
3x

3 
(2

0) C
on

v 
3x

3 
(6

8) U
ps

am
pl

e
U

ps
am

pl
e

∆𝑋%'

∆𝐹%→!' , ∆𝐹%→"'

Content (Cdim)

IFRBlock (32+4)

IFRBlock (20+4)

Decoders

𝐷!

𝐷"

IFRBlock (8N) 𝐷#

Figure 1. Architecture details of the AMT-S. The number in parentheses denotes the output channels. N represents the number of output
groups. IFRBlock denotes the decoder proposed in IFRNet [9].

1. Architecture Details

We build three models with different sizes, termed AMT-
S, AMT-L, and AMT-G. For reproducibility, the architec-
ture details of them are shown in Fig. 1, Fig. 4, and Fig. 5,
respectively. We employ standard residual blocks [3] and
instance normalization [21] in the correlation encoder. The
lookup radius is set to 3. For each update block, a bi-
linear upsampling layer follows each head on upper levels
(i.e., l>1). The IFRBlock represents the decoder proposed
in IFRNet [9], which jointly estimates the bilateral flows
and the intermediate feature. To further improve perfor-
mance, we upsample the correlation feature in the case of
AMT-G to align its spatial resolution with the current inter-
polated feature, facilitating updates in the high-resolution

space. The code is available at https://github.com/
MCG-NKU/AMT.

2. Multi-Frame Interpolation
For the multi-frame setting, we use GoPro dataset [14]

for training and evaluate our model on the test partition of
GoPro dataset [14] and Adobe240 dataset [18]. Here, we
aim at 8× interpolation, synthesizing 7 intermediate frames
with two input frames. The other training settings and loss
functions are consistent with those in our main paper. Fol-
lowing recent frame interpolation works [6, 9], we inject a
temporal embedding vector into the network for 8× inter-
polation. The elements in this vector are all set to t accord-
ing to the current time step, where t ∈ {1/8, 2/8, ..., 7/8}.

1

https://github.com/MCG-NKU/AMT
https://github.com/MCG-NKU/AMT


Overlaid

IFRNet-B [9] AMT-S (Ours) Ground Truth
Figure 2. Qualitative results of our AMT-S and IFRNet-B [9] on Adobe240 [18]. The time steps are 1/4 and 1/2 from top to bottom.

Method
GoPro [14] Adobe240 [18]

PSNR SSIM PSNR SSIM

DVF [12] 21.94 0.776 28.23 0.896
SuperSloMo [7] 28.52 0.891 30.66 0.931

DAIN [1] 29.00 0.910 29.50 0.910
IFRNet-B [9] 29.97 0.922 31.93 0.936
AMT-S (Ours) 30.20 0.927 32.04 0.938

Table 1. Quantitative comparison for 8× interpolation.

We compare our AMT-S with DVF [12], SuperSloMo [7],
DAIN [1], and IFRNet-B [9]. The results of 8× interpola-
tion are shown in Tab. 1. Our method obtains the best PSNR
and SSIM results on both evaluation datasets, indicating the
effectiveness of the proposed AMT for the task of multi-
frame interpolation. Fig. 2 and Fig. 6 visually compare our
method and IFRNet-B on the Adobe240 dataset. Here, we
visualize the cases for 1/4 and 1/2 time steps. It can be
seen that our method can generate more temporally consis-
tent results with fewer artifacts and more clear edges.

3. Limitation

Although our method has shown remarkable perfor-
mance, the 4D correlation volume computed from all pairs
of pixels makes it hard to adapt to very high-resolution in-
puts under a resource-constrained environment. This is be-
cause the computational complexity of constructing corre-
lation volumes is quadratic to the image resolution. The
possible ways to alleviate this problem include computing
each correlation value only when it is looked up [19] or fac-
torizing the 4D correlation volume to two 3D correlation

volumes [22].

4. Discussions with RAFT

Teed and Deng [19] proposed RAFT, which iteratively
performs lookups on multi-scale 4D correlation volumes for
updating flow fields. Given its impressive results, current
state-of-the-art flow estimation methods [5, 8, 22, 23, 25] all
derive from such architecture design. Besides, it inspires the
development of stereo matching [11] and scene flow [20].
However, the RAFT-like design paradigm is not well inves-
tigated in frame interpolation.

To better model large motions for frame interpolation,
we build AMT based on RAFT. However, AMT involves
many novel and task-specific designs beyond it. To better
illustrate our model, we detail the differences between our
AMT and RAFT from the following perspectives:

Volume Design: RAFT constructs a unidirectional correla-
tion volume because it only needs to predict the optical flow
along one direction. For frame interpolation, we hope to
model the dense correspondences on both directions for up-
dating bilateral flows. We thus construct bidirectional cor-
relation volumes. We have verified the effectiveness of the
bidirectional correlation volumes in Tab. 2a of the main pa-
per.

Context Encoder: In RAFT, the context encoder extracts
the content feature only from the first input frame. Because
of the characteristics of frame interpolation, in our AMT,
the context encoder takes the image pair as input. It outputs
the initial intermediate feature, the initial bilateral flows,
and the pyramid features from the input pair. This design is
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Case Vimeo90K [24]
SNU-FILM [2]

FLOPs (G)
Hard Extreme

Single-scale Pred. 35.94 30.52 25.26 124
ConvGRU 35.99 30.58 25.27 132
Tied Weights 35.93 30.56 25.22 121
Convex Upsampling 35.99 30.56 25.28 123
Original Model 35.97 30.60 25.30 121

Table 2. Investigation on RAFT-like [19] designs. The default
setting is marked in gray .

also inspired by recent one-stage frame interpolation meth-
ods [9, 17].

Correlation Lookup: The lookup operation can be directly
performed in RAFT for the identical coordinate system be-
tween the correlation volume and predicted flow field. To
solve the coordinate mismatch issue caused by the invisi-
ble frame, we propose to scale the bilateral flows before the
lookup operation. Besides, we retrieve bidirectional corre-
lations instead of the unidirectional ones in RAFT. We use
the initial bilateral flows (F 1

t→0, F
1
t→1) as the initial starting

point, while RAFT uses zero instead. The lookup strategy
is investigated in Tab.2b of the main paper.

Predict and Update Manner: While RAFT predicts and
updates the flow prediction at a single resolution, we pre-
dict and update the bilateral flows in a coarse-to-fine man-
ner. We also provide a variant of our AMT to verify the
design, which only predicts the flow fields at a single res-
olution before feeding into the last decoder. Tab. 2 shows
that this variant performs worse than the original one. This
indicates that predicting multi-scale flows are important for
frame interpolation. Besides, we also investigate the effec-
tiveness of the cross-scale update in Tab. 2d of the main
paper.

Update Block: In the design of the update block, our AMT
differs from RAFT in five aspects: 1) While RAFT regards
the feature extracted from the visible frame as the content
guidance, we use the interpolated intermediate feature rep-
resenting the invisible frame instead. 2) RAFT only has one
head in update block for regressing a flow residual, while
we have two heads for jointly predicting content and flow
residuals. The two aspects mentioned above have been dis-
cussed in Tab. 2c of the main paper. 3) We stack two convo-
lutional layers instead of a cumbersome ConvGRU unit in
RAFT to handle the content and motion features. We also
investigate a variant that equips with a ConvGRU unit in
each update block. As shown in Tab. 2, this variant shows a
comparable performance in contrast to the original one, but
it has more computational costs. We thus choose to stack
two convolutional layers for efficiency. 4) The weights of
update blocks are not shared across levels in our AMT.
However, weight tying is beneficial to RAFT. Tab. 2 demon-

strates that the model with untied weights performs better
than that with tied weights. 5) We employ bilinear upsam-
pling instead of convex sampling in RAFT for upscaling the
flow fields. As shown in Tab. 2, the two upsampling opera-
tors have similar performance, but convex upsampling will
incur more computation costs. Thus, we choose the bilinear
upsampling in our AMT.

Final Objective: RAFT is designed for flow estimation and
is optimized only with flow regression loss. However, our
AMT is introduced for frame interpolation and is supervised
with both task-oriented flow distillation loss and distortion-
oriented content losses. We need to consider not only the
fidelity of estimated flows but also the diversity for meet-
ing the requirement of task-oriented flows. We thus output
multiple flow pairs rather than a single flow field in RAFT.
Besides, occlusion reasoning and residual hallucination also
need to be considered for faithful content generation.

5. Discussion about Multi-Field Refinement

Some works [4, 15, 16] also attempt to predict multi-
ple flow pairs for preparing intermediate content candi-
dates. Specifically, BMBC [15] predicts six bilateral mo-
tions through the bilateral motion network and optical flow
approximation. ABME [16] generates four bilateral flow
fields based on asymmetric motion assumption. After ob-
taining warped candidate frames and context features, the
two works rely on a dynamic filter and even a cumber-
some synthesis network to generate the final intermediate
frame. Thus, they are inefficient for practical usage. In con-
trast, our AMT is more efficient, as shown in Tab. 1 of the
main paper. We generate multiple flow fields in a single
forward pass instead of multiple inference steps in BMBC
and ABME. Besides, we obtain the intermediate candidates
only in the image domain rather than the feature domain and
stack two lightweight convolutional layers for fusing these
candidates.

M2M-VFI [4] is most relevant to our multi-field refine-
ment. It also generates multiple flows in one step and pre-
pares warped candidates in the image domain. However,
there are five key differences between our multi-field re-
finement and M2M-VFI. First, our method generates the
candidate frames by backward warping rather than for-
ward warping in M2M-VFI. Second, while M2M-VFI pre-
dicts multiple flows to overcome the hole issue and arti-
facts in overlapped regions caused by forward warping, we
aim to alleviate the ambiguity issue in the occluded areas
and motion boundaries by enhancing the diversity of flows.
Third, M2M-VFI needs to estimate bidirectional flows first
through an off-the-shelf optical flow estimator and then pre-
dict multiple bilateral flows through a motion refinement
network. On the contrary, we directly estimate multiple bi-
lateral flows in a one-stage network. In this network, we

3



Overlaid VFIFormer AMT-G (Ours) Ground Truth
Figure 3. Qualitative comparison between AMT-G with VFI-
Former. Our method recovers more clear structure and edges.

first estimate one pair of bilateral flows at the coarse scale
and then derive multiple groups of fine-grained bilateral
flows from the coarse flow pairs. Fourth, M2M-VFI jointly
estimates two reliability maps together with all pairs of bi-
lateral flows, which can be further used to fuse the over-
lapping pixels caused by forward warping. As shown in
Eqn. (5) of the main paper, we estimate not only an occlu-
sion mask but a residual content for cooperating with each
pair of bilateral flows. The residual content is used to com-
pensate for the unreliable details after warping. This design
has been investigated in Tab. 2e of the main paper. Fifth,
we stack two convolutional layers to adaptively merge can-
didate frames, while M2M-VFI normalizes the sum of all
candidate frames through a pre-computed weighting map.

6. More Visual Results

In this section, we provide additional visual results on
two benchmark datasets, including Vimeo90K [24] and
SNU-FILM [2], to further show the superiority of the pro-
posed AMT. The comparison methods include CAIN [2],
AdaCoF [10], ABME [16], RIFE [6], IFRNet(-B/-L) [9],
and VFIFormer [13]. For a fair comparison, we also divide
these methods into two groups according to the computa-
tional cost. As shown in Fig. 3, 7-12, our AMT synthesizes
the object with large motions more faithfully and generates
plausible textures with fewer artifacts.

7. Broader Impact

As presented in this paper, our AMT can synthesize
faithful non-existent frames between two visible frames.
Given its reliable synthesis results, our method may be
abused to forge or tamper with videos.
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Figure 4. Architecture details of the AMT-L. The number in parentheses denotes the output channels. N represents the number of output
groups. IFRBlock denotes the decoder proposed in IFRNet [9].
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Figure 5. Architecture details of the AMT-G. The number in parentheses denotes the output channels. N represents the number of output
groups. IFRBlock denotes the decoder proposed in IFRNet [9].
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Overlaid IFRNet-B [9] AMT-S (Ours) Ground Truth

Overlaid IFRNet-B [9] AMT-S (Ours) Ground Truth

Overlaid IFRNet-B [9] AMT-S (Ours) Ground Truth

Figure 6. Qualitative results of AMT-S and IFRNet-B [9] on Adobe240 [18]. The time steps are 1/4 and 1/2 from top to bottom.
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Overlaid AdaCoF [10] RIFE [6]
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Figure 7. Visual comparison for the methods with low computational complexity on Vimeo90K dataset [24]
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Figure 8. Visual comparison for the methods with relatively high computational complexity on Vimeo90K dataset [24].
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Figure 9. Visual comparison for the methods with low computational complexity on the Hard partition in SNU-FILM dataset [2].
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Figure 10. Visual comparison for the methods with relatively high computational complexity on the Hard partition in SNU-FILM
dataset [2].
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Figure 11. Visual comparison for the methods with low computational complexity on the Extreme partition in SNU-FILM dataset [2].
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Figure 12. Visual comparison for the methods with relatively high computational complexity on the Extreme partition in SNU-FILM
dataset [2].
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