
Appendix

A. Approach Details
In this section, we show the details of our AShape-

Former, which is divided into naive shape encoding method,
Channel Attention Module (CAM), ShapeFormer and se-
mantics Guided Module (SGM).

A.1. Naive method and CAM

Naive method. In the naive shape encoding method, the
backbone is based on the PointNet++ architecture [15], has
four set abstraction layers and two feature upsampling lay-
ers. We follow the same layer parameters (e.g. ball-region
radius, number of sample points, and MLP channels) as
VoteNet [13]. We sample 1024 seed points and 256 can-
didate points. Before shape encoding, the candidate point
aggregates n vote point features within a radius r. In the
naive method, n is 16 and r is 0.3. The input tensor dimen-
sion of the candidate aggregation module is (8, 256, 1024),
8 is the batch size, 256 is the dimension of the vote feature
and 1024 is the number of vote points. We perform farthest
point sampling (FPS) in vote points, and 256 candidates
were sampled. We perform query and group [15] on 256
candidates, and obtain a 4D(8, 512, 256, 16) tensor. Fea-
ture aggregation is performed on 16 vote points within each
candidate neighborhood, and the output tensor dimension is
(8, 128, 256). Compared to seed points, voting points are
more compact. Therefore, it is easier to obtain shape key
points distributed on the same object surface by sampling
the seed points with the same index as the candidate aggre-
gation. Naive object-level shape features are obtained using
MLP and Max-pooling like candidate aggregation. The out-
put of the naive shape encoding module, like the candidate
aggregate, is a (8, 128, 256) tensor.
CAM. The input of our CAM is the candidate features p(O)
and object-level shape features p(C), both of which have
a feature channel of 256. The calculation of CAM is as
follows:

p(O) = σ(FCs(p(O))) ∗ p(O), (1)

p(C) = σ(FCs(p(C))) ∗ p(C), (2)

where FCs represent 2 layers of fully connected layer
with [256,64,256]. σ(·) is the sigmoid activation.

A.2. ShapeFormer architecture details

ShapeFormer is a multi-layer multi-head self-attention
[18] module. We use one layer of self-attention block and
the number of heads is 4. The input of the ShapeFormer
module is candidate points and the shape key point, the di-
mensions of the input data are shown in Table. 1. We regard
the candidate feature as shape token [5, 8], shape token and
shape key point features are concatenated together and fed

Input coordinate Feature
Candidate (8, 256, 3, 1) (8, 256, 256, 1)

SKP (8, 256, 3, 16) (8, 256, 256, 16)

Table 1. ShapeFormer input data dimension. SKP is shape key
points.

Input Branch Input MLP Channels
Joint [512, 256, 64, 1]
Point [256, 128, 64, 1]
Image [256, 128, 64, 1]

Table 2. Semantic segmentation layer parameters of SGM module
applied to imVoteNet.

into the self-attention module. The output dimension of the
last layer of ShapeFormer is (8, 256, 256, 17). The shape
token of the output layer is used as the object-level shape
feature, fused with the candidate feature, and fed to the de-
tection head.
Object-Scene Positional Encoding. The position encod-
ing [18] is learned from point coordinates. Our position
encoding is divided into two parts: object-level encoding
and scene-level encoding. The input tensor dimension of
scene-level encoding is (8, 256, 3, 17), the last dimension
17 includes 1 candidate point and 16 shape key points. A
256-dimensional positional encoding is learned through a
[3, 128, 256] MLPs. The object-level encoding is the posi-
tion encoding in the canonical coordinate system centered
on the candidate point. Since the candidate point is the
origin of the coordinates in the object-level coordinate sys-
tem, its position is encoded as 0 in the object-level position
encoding. The input dimension is (8, 256, 3, 17), the last
dimension 17 includes a coordinate origin and 16 relative
positions, and then also learns a 256-dimensional position
encoding by [3, 128, 256] MLPs. Finally, The object-level
positional encoding and scene-level positional encoding are
added to the feature and fed to the ShapeFormer.

A.3. SGM architecture details

When we use SGM, the backbone follows the same layer
as the naive method (§ A.1) and VoteNet [13] except for the
second SA (set abstraction) [15] layer. To guide shape en-
coding with semantic information, we append a segmenta-
tion head for estimating the foreground confidence of each
point. We keep more seed points in the SA layer, then sort
these seed points by segmentation confidence, and finally
pick out the highest quality the 1500 seed points are used
for shape encoding. Since we sampled more foreground
points, we could get more shape key points in ShapeFormer,
so when we applied SGM to ShapeFormer, we chose 24
shape key points instead of 16. The segmentation head uses
3 layers of MLPs, and finally outputs a 1-dimensional ten-



sor. After passing a Sigmoid function, the 1D tensor rep-
resents segmentation scores. When the SGM applied to
the VoteNet [13], The segmentation head is composed of
3 layers of MLP [256, 128, 64, 1]. In the implementation
based on imVoteNet [12], for the joint branch, point branch
and image branch, the specific parameters are shown in Ta-
ble 2. We implement our method on MMDetection3D [3]
with one NVIDIA RTX 3090 GPU. Figure. 1 visualizes the
positive impact of the SGM module on seed point sampling
and voting during testing.

A.4. AShapeFormer loss function details

As mentioned in the main paper, our model is trained
end-to-end with a multi-task loss including the SGM loss
Lsgm , voting regression loss Lvote , objectness loss Lobj ,
bounding box estimation loss Lbox , and semantic classifi-
cation Lcls losses.

L = λ1Lsgm + λ2Lvote + λ3Lbox + λ4Lcls + λ5Lobj, (3)

The balancing factors λ’s are set as λ1 = 3.0, λ2 = 10.0,
λ3 = 10.0, λ4 = 1.0 and λ5 = 5.0.

Lsgm is used to supervise the foreground/background
seed points prediction in SGM, which we define as follows

Lsgm = − 1

M

M∑
i=1

[p̂i ln (pi) + (1− p̂i) ln (1− pi)] , (4)

where pi and p̂i denote the predicted segmentation score
and the ground-truth score (1 for foreground and 0 for back-
ground). M is the total number of input points.

Following VoteNet [13] and imVoteNet [12], the vote
loss Lvote is defined as

Lvote =
1

M

M∑
i=1

∥∆xi −∆x∗
i ∥1 [si on object ] , (5)

where 1 [si on object ] indicates whether a seed point si is
a foreground point. the box loss Lbox is defined as

Lbox = Lcenter-reg + 0.1Langle-cls + Langle-reg

+ 0.1Lsize-cls + Lsize-reg ,
(6)

We refer readers to [13, 14] for more details about Lobj ,
Lbox , and Lcls .

A.5. Training details

When we trained our AShapeFormer based on the
MMdetection3D [3], we used the AdamW [10] optimizer
(β1 = 0.9, β2 = 0.999) with 48 epochs. We set the ini-
tial learning rate to 0.001 when training on the SUNRGBD
dataset [16] and 0.008 when training on the Scannet V2
datase [4] with a batch size of 8, and is decayed 10× at 24,
32 and 40 epochs. The learning rate of the ShapeFormer is
set as 1/10 of that in the backbone network. Gradient nor-
malized clipping is used, with maximum norm of 10.

Seed Candidate VoteNet ours
1024 256 63.8 65.8
1200 256 63.4 66.0
1400 256 63.0 65.9
1500 256 63.9 66.6
1600 256 63.9 66.4

Table 3. Ablation study on the performance of AShapeFormer
with different seed point number on SUN RGB-D dataset.

B. More Ablation Study and Discussion
B.1. Number of seed points

Since our AShapeFormer is guided by semantic infor-
mation, we can sample more seed points in the backbone
without worrying about introducing a large number of back-
ground points. More foreground points would be a great
help to our shape encoding. Table 3 shows that our AShape-
Former improves with the increase in the number of sam-
pling seed points. However, when we increased the seed
points of vanilla VoteNet [13], there was no significant im-
provement in performance. This is because sampling more
seed points without any restrictions will inevitably intro-
duce a large number of background points, which is very
unfavorable to the detection results. At the same time, it
can be seen that even if we use the same number of 1024
seed points as VoteNet, AShapeFormer performance is con-
siderably better than VoteNet.

B.2. Sampling Strategy

In order to sample more foreground points, in addition to
SGM, we also analyzed various foreground point sampling
methods, such as KPS [9], FBS [19], F-FPS [21] and Cls-
aware [22].
KPS. K-Closest Points Sampling (KPS) is a candidate point
sampling method proposed by GroupFree3D [9], a point is
assigned a positive value if it lies within the ground truth
object box and it is one of the k closest points to the object
center. In inference, initial candidates are selected based on
the classification scores of the points.
F-FPS. Feature-FPS (F-FPS) is a point cloud downsam-
pling algorithm proposed by 3DSSD [21]. It utilizes the
feature distance as the criterion in FPS, many similar use-
less negative points will be mostly removed.
FBS. Foreground Biased Sampling (FBS) is proposed by
RBGNet [19]. It adds a semantic segmentation head to the
backbone, and samples foreground and background points
according to a point ratio. Its purpose is to sample more
points on foreground object surfaces while still keeping the
coverage rate of the whole scene.
Cls-aware. Class-aware Sampling (Cls-aware) is proposed
by IASSD [22]. The segmentation network not only dis-
tinguishes foreground and background points, but also per-



Method KPS FBS F-FPS IASSD Ours (SGM)
mAP@0.25 62.4 61.3 63.4 62.1 65.8

Table 4. Experimental results of imVoteNet [12] using different
sampling algorithms on the SUNRGBD [16] dataset.

Model Batchsize Epoch mAP@0.25
BRNet [2] 8 220 61.1

RBGNet [19] 8 360 64.1
DisArm [6] 8 220 65.1

AShapeFormer 8 48 65.8

Table 5. Comparison on training epoch on SUN RGB-D dataset.

forms semantic segmentation for each category. In experi-
ments, we found that due to the limited accuracy of multi-
category segmentation, it did not significantly help the de-
tection results.

We apply several different sampling algorithms men-
tioned above in AShapeFormer. As shown in Table 3, the
experimental results show that foreground sampling with
our SGM is more helpful to the detection results. We ob-
serve that in the network sampling these algorithms, it takes
a long training epoch, such as 360 epoch of FBS [19], we
only need 48 epoch. Therefore, these algorithms may not be
able to achieve their potential during the 10-fold shortened
training process. We use one of the simplest foreground
point bias sampling algorithms, and the results show its su-
periority. We keep more seed points 2048, and then select
1500 with the highest scores through semantic score. Al-
though this method is simple, it is very effective.

B.3. Training Epoch

We have compared the training epoch and mAP of our
AShapeFormer and other shape encoding methods. From
Table 6, we can see that compared with the recent BRNet
and RBGNet, when batch size is set to 8, we need very
little training epoch but reach far beyond their mAP. This
fully demonstrates the advantages of our AShapeFormer
over other methods.

B.4. Positional Encoding

We conduct an extensive ablation study to analyze the
efficacy of different Positional Encoding methods of our
method. Table 6 compares the detection results of the
Scene-level Positional Encoding, Object-level Positional
Encoding combined with the AShapeFormer (VoteNet*) on
the SUN RGB-D dataset when the IOU is 0.25.

B.5. Inference Speed

The realistic inference speed of our method is compet-
itive with other state-of-the-art methods. For a fair com-
parison, all experiments are run on the same device (sin-

None ✓ ✓ ✓ ✓
Scene-level ✓ ✓
Object-level ✓ ✓
mAP@0.25 57.7 58.9 59.5 62.2

Table 6. Contribution of Positional Encoding of AShapeFormer
(SUN RGB-D dataset). None is without the Positional Encoding.

Model Frames/s mAP
VoteNet* [13] 26.1 59.7

imVoteNet* [12] 13.1 64.5
3DETR [11] 6.6 59.1
BRNet [2] 21.9 61.1

RBGNet [19] 3.1 64.1
Ours(VoteNet*) 19.2 62.2

Ours(imVoteNet*) 10.0 65.8

Table 7. Comparison on realistic inference speed on SUN RGB-D
validation set with mAP@0.25.

gle NVIDIA RTX 3090 GPU, 62G RAM, and i9-10980XE
CPU). The results are shown in Table 7. Our method
achieves better performance with a competitive speed. Our
method significantly improved expressiveness with little
increase in reasoning time, as compared to VoteNet and
imVoteNet. At the same time, as compared to other recently
shape encoding method such as RBGNet [19], our method
offers a dual advantage in speed and precision.
C. More Experimental Results
C.1. Per-category results.

We evaluate per-category on ScanNet V2 [4] under dif-
ferent IoU thresholds. Table 8 and Table 9 report the results
on 18 classes of ScanNet V2 with 0.25 and 0.5 box IoU
thresholds respectively. Taking VoteNet [13] as the base-
line, our method achieves remarkable 4.5% and 6.6% im-
provements at mAP@0.25 and mAP@0.5, respectively. our
AShapeFormer applied to VoteNet* [13] achieves 2.8% and
3.6% improvements at mAP@0.25 and mAP@0.5, respec-
tively. Applying AShapeFormer to the more recent Trans-
former method GroupFree3D [9] also has a significant im-
provement with 1.3% and 0.6%. These improvements are
achieved by using AShapeFormer to better encode object-
level shape feature.

C.2. Visualization of SGM

Figure 1 visualizes the positive impact of the SGM mod-
ule on seed point sampling and voting during testing. The
second row of Fig. 1 is the seed points sampled in the test
phase of vanilla votenet. The following two rows show the
seed points selected by our SGM module and the generated
voting points. The second row shows that VoteNet’s FPS
sampling covers the entire scene but picks a large number of
background points. These background points will be forced



Model mAP cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
3D-SIS [7] 40.2 19.7 69.7 66.1 71.8 36.1 30.6 10.9 27.3 0.0 10.0 46.9 14.1 53.8 35.9 87.6 42.9 84.2 16.2
HGNet [1] 61.3 - - - - - - - - - - - - - - - - - -

VoteNet [17] 58.6 36.2 87.9 88.7 89.6 58.7 47.3 38.1 44.6 7.8 56.1 71.6 47.2 45.3 57.1 94.9 54.7 92.1 37.2
VoteNet∗ [17] 63.8 51.1 86.5 89.1 88.2 65.7 54.6 45.1 57.8 16.3 60.6 72.2 50.6 50.6 72.1 98.9 64.5 92.2 50.8

MLCVNet [20] 64.4 42.4 88.4 88.9 87.4 63.5 56.9 46.9 56.9 11.9 63.9 76.0 56.7 60.8 65.9 98.3 59.1 87.2 47.8
3DETR [11] 65.0 49.4 83.6 90.9 89.8 67.6 52.4 39.6 56.4 15.2 55.9 79.2 58.3 57.6 67.6 97.2 70.6 92.2 53.0

GroupFree3D [9] 69.1 52.1 91.9 93.6 88.0 70.7 60.7 53.7 62.4 16.1 58.5 80.9 67.9 47.0 76.3 99.6 72.0 95.3 56.4
RBGNet [19] 70.2 52.6 91.3 93.1 89.7 73.5 60.1 51.9 53.5 20.0 72.6 82.5 63.5 59.8 76.0 99.2 74.7 92.6 55.8
Ours(VoteNet) 63.1(+4.5) 46.6 89.5 89.5 88.3 65.4 53.2 43.4 54.7 14.4 49.8 67.3 53.3 49.0 73.2 96.6 64.4 92.5 45.0

Ours(VoteNet∗) 66.6(+2.8) 50.0 90.6 91.3 91.7 68.1 58.8 49.9 52.5 19.5 58.0 76.6 49.6 50.4 75.2 99.0 71.7 92.4 53.6
Ours(GroupFree3D) 70.4(+1.3) 52.1 82.2 91.5 90.1 75.8 60.9 50.3 62.6 14.5 65.7 80.6 73.7 60.3 81.2 100.0 72.1 96.8 56.2

Ours(RBGNet) 71.1(+0.9) 54.6 89.0 93.9 91.9 75.3 64.5 61.3 59.2 25.4 63.1 80.0 57.8 66.4 75.7 99.3 72.4 93.2 57.8

Table 8. 3D object detection results on ScanNet V2 validation set with mAP@0.25. ∗ denotes that the model is implemented on MMDe-
tection3D [3]. Ours (M) denotes that M is enhanced with our AShapeFormer.

Model mAP cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
3D-SIS [7] 22.5 5.7 50.2 52.5 55.4 21.9 10.8 0.0 13.1 0.0 0.0 23.6 2.6 24.5 0.8 71.7 8.9 56.4 6.8
HGNet [1] 34.4 - - - - - - - - - - - - - - - - - -

VoteNet [17] 33.5 8.0 76.0 67.2 68.8 42.3 15.3 6.4 28.0 1.25 9.5 37.5 11.5 27.8 9.9 86.5 16.7 78.8 11.6
VoteNet∗ [17] 44.2 23.1 77.7 76.7 70.6 46.9 30.4 15.7 45.7 4.6 27.4 49.8 30.0 36.9 20.9 90.7 32.5 83.3 28.4

MLCVNet [20] 42.1 16.6 83.3 78.1 74.7 55.1 28.1 17.0 51.7 3.7 13.9 47.7 28.6 36.3 13.4 70.9 25.6 85.7 27.5
3DETR [11] 47.0 - - - - - - - - - - - - - - - - - -

GroupFree3D [9] 52.8 26.0 81.3 82.9 70.7 62.2 41.7 26.5 55.8 7.8 34.7 67.2 43.9 44.3 44.1 92.8 37.4 89.7 40.6
RBGNet [19] 54.2 30.6 80.9 86.5 84.8 66.4 40.3 29.5 48.6 7.9 44.7 59.1 40.8 44.8 39.7 92.9 45.3 90.9 41.5
Ours(VoteNet) 41.6(+8.1) 20.1 80.8 76.1 70.2 53.6 31.5 14.7 30.4 5.4 25.5 33.1 27.3 35.5 13.6 89.1 30.5 89.7 22.2

Ours(VoteNet∗) 47.8(+3.6) 25.3 81.1 80.8 71.3 56.8 33.3 20.9 53.8 6.1 33.8 56.9 29.2 38.0 33.4 86.5 40.1 80.3 30.9
Ours(GroupFree3D) 53.4(+0.6) 30.3 82.5 82.5 74.2 64.6 39.8 26.7 56.2 6.8 34.2 69.9 47.3 41.6 43.2 89.9 39.9 91.1 40.8

Ours(RBGNet) 56.6(+1.4) 31.0 82.2 86.9 87.7 67.6 43.1 35.4 57.2 13.2 34.8 59.8 37.2 52.8 50.0 97.6 43.7 91.0 46.4

Table 9. 3D object detection results on ScanNet V2 validation set with mAP@0.5. ∗ denotes that the model is implemented on MMDetec-
tion3D [3]. Ours (M) denotes that M is enhanced with our AShapeFormer.

to predict the displacement relative to the center of the ob-
ject in the voting process. Therefore, the voting points are of
low quality, not only not close to the center of the object, but
also somewhat distributed outside the bounding box. The
fourth row of the Fig. 1 is the seed point sampling result
guided by the semantic information. It can be seen that
most of our seed points are foreground points. Based on
sampling that is more biased towards the foreground points,
we get better voting results, as shown in the 5th row of the
Fig. 1, our vote points are mostly close to the center of the
object and are also very close to each other, which is very
important for the subsequent shape encoding and 3D bound-
ing box prediction.

C.3. More Qualitative Results

We provide more qualitative comparisons between our
method and the baseline methods on ScanNet V2 and SUN
RGB-D datasets. Figure 2 visualizes the detection results
on the Scannet V2 dataset. We compare our AShapeFormer
with VoteNet. As stated in the main text, our method has

a stronger ability to eliminate false positives. For example,
the table in the first row, the cabinet in the fourth row and
the chair in the fifth row. The detection results of VoteNet
have a large number of false positives, our AShapeForemer
eliminates these false positives and obtains more reliable
and accurate results.

Our method utilizes the complete object-level shape fea-
tures, so it can classify objects more accurately. For exam-
ple, the cabinet enclosed by the pink box in the upper left
corner of the third row, votenet wrongly predicts it as door,
and the garbagebin in the lower left corner, votenet thinks it
is a cabinet. Our AShapeFormer predicts more correctly for
these difficult scenarios.

We also show some typical failure cases in Fig. 2. As
shown in row 2, When an object consists of multiple clearly
demarcated parts, our AShapeFormer cannot avoid the ex-
istence of false positive prediction bounding boxes. As
shown in the third and fourth rows of the Fig. 2, when the
point cloud is too sparse or incomplete, our AShapeFormer
will miss object.Tackling these missed detections when the



points are too sparse and incomplete is an interesting and
important future direction of our work.

Figure 3 visualizes the experimental results of imvotenet
and our imvotenet-based AShapeFormer.

D. Limitations

Although our method achieves promising performance
on multiple datasets, there are still some limitations.
Compared with the previous approaches, AShapeFormer
achieves a large improvement without adding much compu-
tation. However, As shown in Fig. 1 and Fig. 2, despite the
guidance of semantic information, it is still not guaranteed
to eliminate all outliers. Secondly, due to the sparseness and
incompleteness of point clouds, there will be missed detec-
tions. In the future, we will explore to incorporate RGB im-
ages and point cloud completion methods to encode more
complete shape information in our technique.

References
[1] Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying,

Danny Z Chen, and Jian Wu. A hierarchical graph network
for 3d object detection on point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 392–401, 2020. 4

[2] Bowen Cheng, Lu Sheng, Shaoshuai Shi, Ming Yang, and
Dong Xu. Back-tracing representative points for voting-
based 3d object detection in point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8963–8972, 2021. 3

[3] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 2, 4

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 2, 3, 8

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1

[6] Yao Duan, Chenyang Zhu, Yuqing Lan, Renjiao Yi, Xinwang
Liu, and Kai Xu. Disarm: Displacement aware relation mod-
ule for 3d detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16980–16989, 2022. 3

[7] Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d se-
mantic instance segmentation of rgb-d scans. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4421–4430, 2019. 4

[8] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3588–3597, 2018. 1

[9] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.
Group-free 3d object detection via transformers. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2949–2958, 2021. 2, 3, 4

[10] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2018. 2

[11] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-
end transformer model for 3d object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2906–2917, 2021. 3, 4

[12] Charles R Qi, Xinlei Chen, Or Litany, and Leonidas J
Guibas. Imvotenet: Boosting 3d object detection in point
clouds with image votes. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 4404–4413, 2020. 2, 3, 9

[13] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9277–9286, 2019. 1, 2,
3, 8

[14] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas. Frustum pointnets for 3d object de-
tection from rgb-d data. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 918–927,
2018. 2

[15] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 1

[16] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015. 2, 3, 9

[17] Shuran Song and Jianxiong Xiao. Deep sliding shapes for
amodal 3d object detection in rgb-d images. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 808–816, 2016. 4

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[19] Haiyang Wang, Shaoshuai Shi, Ze Yang, Rongyao Fang,
Qi Qian, Hongsheng Li, Bernt Schiele, and Liwei Wang.
Rbgnet: Ray-based grouping for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1110–1119, 2022. 2, 3, 4

[20] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming
Zhang, Kai Xu, and Jun Wang. Mlcvnet: Multi-level con-
text votenet for 3d object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10447–10456, 2020. 4

[21] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. In Proceedings

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d


of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11040–11048, 2020. 2

[22] Yifan Zhang, Qingyong Hu, Guoquan Xu, Yanxin Ma, Jian-
wei Wan, and Yulan Guo. Not all points are equal: Learn-
ing highly efficient point-based detectors for 3d lidar point
clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18953–
18962, 2022. 2



Figure 1. Semantic Guided Sampling and Voting. Rows 2-4 are VoteNet seed points, VoteNet vote points, our seed points and our vote
points. Best viewed on screen.



Figure 2. Representative qualitative results on ScanNet V2 dataset [4]. As compared to the baseline, i.e., VoteNet [13], AShapeFormer
enhancement not only enables detection of more challenging objects, but also reduces false positive detections. Best viewed on screen.



Figure 3. More qualitative results of different 3D object detection methods on SUN RGBD dataset [16]. The baseline methods is imVoteNet
[12]. Best viewed on screen. Our method often correctly detects those objects for which ground truth annotation is not provided. This
implies that mAP values of our method are under-estimated.


	. Approach Details
	. Naive method and CAM
	. ShapeFormer architecture details
	. SGM architecture details 
	. AShapeFormer loss function details
	. Training details

	. More Ablation Study and Discussion
	. Number of seed points
	. Sampling Strategy
	. Training Epoch
	. Positional Encoding
	. Inference Speed

	. More Experimental Results
	. Per-category results.
	. Visualization of SGM
	. More Qualitative Results

	. Limitations

