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1. Optical Flow Analysis in Video Restoration

Optical flow, the core component to model the motion in-
formation, has been widely used in video super-resolution
[2, 3], video deblurring [15, 18] and video denoising [21].
However, Zhu et al. [5] demonstrate that optical flow can-
not estimate the alignment information well because of the
significant influence of the motion blur. [6] also show that
the optical flow is not accurate in noisy images.

We provide a quantitative analysis of optical flow in three
video restoration tasks, including video super-resolution,
video deblurring and video denoising. We select Ba-
sicVSR++ [3] (denoted as “BasicVSR++”) as the base-
line model. To evaluate the importance of optical flow
module, we remove the optical flow estimation from Ba-
sicVSR++ (denoted as “BasicVSR++ w/o flow”). We in-
crease the number of residual blocks [9] and offsets com-
puting layers in DCN to maintain the same running time
as BasicVSR++. Then two models are trained for 200,000
iterations on video super-resolution (REDS4 dataset [13]),
video deblurring (GoPro dataset [14]) and video denoising
(Set8 dataset [20]), respectively. For a fair comparison of
three tasks, we do not take the generalized verison [4] of
BasicVSR++ and the models for video deblurring and video
denoising have the same parameters as BasicVSR++ [3] for
video super-resolution. It is observed in Table 1 that the
optical flow module makes different influences on differ-
ent tasks. The optical flow can boost the performance of
super-resolution by 0.56 dB. However, optical flow cannot
improve video deblurring and denoising greatly because
optical flow is not that accurate in blurry and noisy images
as shown in [5, 6, 18, 22].

We also provide a visualization of optical flow in Fig-
ure 1. Given degraded input frames Ii−1, Ii and ground
truth frames GTi−1, GTi, we utilize a pre-trained optical
flow model [16] to estimate the optical flow of degraded
pairs Ii → Ii−1 and ground truth pairs GTi → GTi−1.

Method SR Deblurring Denoising ParamsREDS4 GoPro σ=10 σ=30 σ=50
BasicVSR++ 32.01 33.22 36.19 31.75 29.56 7.3M

BasicVSR++ w/o flow 31.45 33.25 36.10 31.62 29.49 6.6M

Table 1. Analysis of optical flow on different tasks. Optical flow
can improve video super-resolution greatly (+0.56 dB PSNR), but
not in video deblurring and denoising.

We also utilize the optical flow network trained in the gen-
eralized version [4] of BasicVSR++ to visualize the task-
oriented flow. It is shown in Figure 1 that the optical
flow estimation is not accurate in noisy frames or blurry
frames. Even with training on GoPro dataset [14] or DAVIS
dataset [11], the task-oriented flow could not produce more
accurate optical flow.

The different influences of optical flow estimation illus-
trate that the optical flow could help improve video super-
resolution but make small contribution to video deblur-
ring and denoising. Since it is difficult for optical flow to
model motion information directly in video deblurring and
video denoising, we design grouped spatial-temporal shift
to achieve large receptive fields for implicit temporal cor-
respondence modeling when optical flow is inaccurate.
The network is not designed for video super-resolution,
which optical flow estimation could greatly help. Our net-
work does not utilize optical flow and may not perform well
on video super-resolution.

2. Qualitative Visualization

Video results and analysis. We provide four videos
(Deblurring1.mp4, Deblurring2.mp4, Denoising1.mp4, De-
noising2.mp4) in the project pages. Deblurring1.mp4 and
Denoising1.mp4 provide the full-frame visualization of our
restored video. It is shown that ours videos do not pro-
duce flicker cases and are temporal consist and stable. De-
blurring2.mp4 and Denoising2.mp4 are provided to com-
pare VRT [12] and our method clearly. It is shown that our
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Noisy frame Ii−1 Noisy frame Ii Clean frame GTi

Optical flow from clean pairs Optical flow from noisy pairs Task-oriented flow [4] from noisy pairs

Blurry frame Ii−1 Blurry frame Ii Sharp frame GTi

Optical flow from sharp pairs Optical flow from blurry pairs Task-oriented flow [4] from blurry pairs
Figure 1. Optical flow visualization on GoPro testset [14] and Set8 testset [20]. The optial flow estimation of blurry images and noisy
images is not accurate due to the negative influence of blur and noise. Task-oriented flow is usually smooth, but it is still inaccurate.

Contribution x-axis y-axis
Top 1 ∼ 4 71.5 % 66.3 %
Top 5 ∼ 8 32.5 % 34.7 %

Top 9 ∼ 12 14.4 % 13.8 %
Top 13 ∼ 16 3.7 % 3.5 %

Table 2. The correlations between the optical flow Wi−1→i of
ground truth frames and the pseudo optical flow wi−1→i produced
from shifted features of different contribution weights.

method can restore more textures and details than VRT in
both video deblurring and video denoising.

3. Further Analysis of Grouped Spatial Shift
Apart from the local attribute map (LAM) [8] visualiza-

tion, we provide further analysis of grouped spatial shift.
We perform LAM to obtain the contribution weights of four
shifted feature groups of oi+1 in helping restoring the lo-
cal patch of Oi. According to the contribution weights, we

sort M shift vectors and divide them into different contri-
bution classes. To find the connections between important
shifted features and temporal motion information, we select
optical flow to evaluate their shift vectors. M shift vec-
tors are sorted according to their contribution weights. We
average top-4 important shift vectors obtain a pseudo opti-
cal flow wi−1→i for the local grids. We also calculate the
pseudo optical flows of top 5 ∼ 8, 9 ∼ 12 and top 13 ∼ 16
important vectors. We utilize a pre-trained spynet [16] to
estimate the optical flow Wi−1→i from ground truth clean
frames Hi−1 and Hi. The optical flow Wi→i+1 is aver-
aged in the every local grid. We calculate the correlations
between optical flow Wi−1→i and the pseudo optical flow
wi−1→i along x-axis and y-axis, separately. It is shown in
Table 2 that shifted feature groups usually make more con-
tribution when the shift direction is similar to the optical
flow Wi−1→i.
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Method Largest 10 % Smallest 10 % Other 80 %
VRT 32.45 35.98 34.96
Ours 33.94 (+1.49)36.23 (+0.25)35.61 (+0.65)

Table 3. Deblurring performance of different motion magnitudes.

4. Motion magnitudes
We categorize each frame of GoPro dataset according to

motion magnitudes. For each blurry frame Ii and its corre-
sponding ground truth Oi, we utilize a pre-trained SPyNet
to obtain optical flows between Oi and two adjacent frames
Oi−1, Oi+1. We obtain motion magnitudes by averaging
the flows. The results in Table 3 show that our base model
achieves 33.94dB in 10% largest magnitudes, which sur-
passes VRT (32.45dB) by +1.49dB. The gain of 10% small-
est is 0.25dB.

5. Network Architecture
In our three-stage design, we take a three-scale U-Net

[17] as our backbone. For each U-Net, we adopt the U-
Net-like structure of MPRNet [23] to encode effective fea-
tures. Average pooling and 2D bilinear upsampling is ap-
plied to obtain multi-scale features. Each feature in skip
connections are processed by a Channel Attention Block
(CAB) [24], which is the residual blocks equipped with a
channel attention layer. The channel attention layer is first
introduced in squeeze-and-excitation networks [10], and ex-
plored in low-level visions [23, 24]. In frame-wise feature
extraction and final restoration, We take the Channel At-
tention Block (CAB) to extract frame-wise features. In
multi-frame fusion, we utilize the proposed GSTS blocks
to achieve multi-frame feature aggregation and communi-
cation. A GSTS block contains a grouped spatial-temporal
shift operation and a lightweight fusion layer. The fusion
layer, consisting of two lightweight convolution blocks (de-
noted as “FusionConv”), fuses the spatial-temporal shifted
features effectively. Our FusionConv block takes the frame-
work of Super Kernels (SKFlow) [19], which utilizes a
small kernel convolution and a large kernel convolution
as spatial filtering. The FusionConv block contains three
point-wise convolution enable communication across chan-
nels and two depth-wise convolution for effective feature fu-
sion. We utilize Layernorm [1] and channel attention [7] to
improve the network capacity. Learning from NAFNet [7],
we replace all GELU layers in SKFLow by gated layers to
improve the performance further.

For our small model (“Ours-s”), we stack 3 slim U-
Nets with 14 channels for frame-wise processing (Stage-
1 and Stage-3) and the channel number of multi-frame fu-
sion is set to be 64. For our base model “Ours” and en-
hanced version “Ours+”, we stack 5 slim U-Nets with 24
channels for frame-wise processing (Stage-1 and Stage-3)
and the channel number of multi-frame fusion is set to be
80.
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