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In this supplementary material, we provide more theo-
retical and experimental justifications with four sections.

• Sec. A: causal explanation on the bias and its solutions;

• Sec. B: the theoretical proof of front-door adjustment
and the deployed OSDA adjustment;

• Sec. C: more discussions and clarifications;

• Sec. D: sensitivity analysis on the proposed method.

A. Justifying the Bias
A.1. Formulating the Bias with Causality

As shown in Figure 1(a), the open-set context C is the
confounder [6] that serves as the shared cause (head) in
two causal links C → X and C → Y (highlighted in
blue), leading to a biased observation P (Y |X). This bias
is caused by the confounding effect of C [6], and is well-
proven in [6], and is theoretically grounded in various com-
puter vision tasks [5, 8–12].

A.2. Solving the Bias with Causality

To address the bias, we follow the causal theory [6] to de-
ploy the do-calculus [6], which corrects the biased posterior
P (Y |X) with P (Y |do(X)). Pearl and Mackenzie [6] have
given two available solutions to implement the do-calculus
from the theoretical perspective, i.e., backdoor adjustment
(Figure 1(b)) and front-door adjustment (Figure 1(c)).

Backdoor Adjustment. Existing works [9, 12] conduct
backdoor adjustment [6] (see Figure 1(b)) for debiasing,
which aims to cut the link C → X to remove the con-
founding effect [6] of C. Specifically, as for the implemen-
tation, they [9, 12] decouple the context C into bias-related
components C = {C1, C2, ...Cn} via dataset-level statistics
and use them to guide model training. For example, with
ground-truth labels, VC-RCNN [9] calculates class centers
by averaging per-class samples as Cn, generating a context
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Figure 1. Illustration of (a) the proposed OSDA Structural Causal
Model, (b) backdoor adjustment, and (c) front-door adjustment.

dictionary ∈ RK×D (K is the class number and D is the
channel dimension.). Then, they use the context dictionary
to guide the learning of X through soft weighing, which in-
troduces balanced class knowledge in each training sample.
However, in OSDA, the non-available novel-class images
and labels in the source domain lead to an unobservable
open-set context, making it inevitable to deploy the back-
door adjustment [6] based debiasing strategy.

Front-Door Adjustment. This work breaks through this
barrier by implementing the unexplored front-door adjust-
ment, which allows the unobservable counfounder [6], as
shown in Figure 1(c). Instead of cutting the link C → X
through decoupling the context, the front-door adjustment
cuts the link X → Z to remove the confounding effect
of C [6]. Hence, our crucial insight of deploying front-
door adjustment lies in decoupling X = {X1, X2, ..., Xn},
which is implemented as the decoupled base-class and
novel-class regions X = {Xb, Xn} for unbiased OSDA.

B. Theoretical Proofs
B.1. Proof of the Front-Door Adjustment (Eq. 1 in

the Main Paper)

Following [6], the proof of the original front-door adjust-
ment considers two causal rules [6].
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• Causal Rule 2: P (Y |do(X), Z) = P (Y |X,Z) if Z
satisfies the back-door criterion

• Causal Rule 3: P (Y |do(X)) = P (Y ) if there is no
path from X to Y with only forward-directed arrows

Note that Rule 2 and Rule 3 have been proven satisfied in
the proposed causal model [6]. Then, the proof consists of
the following steps [6],

P (Y |do(X))

=
∑
Z

P (Y |do(X), Z)P (Z|do(X))

(ProbabilityAxioms)

=
∑
Z

P (Y |do(X), do(Z))P (Z|do(X))

(CausalRule 2)

=
∑
Z

P (Y |do(X), do(Z))P (Z|X)

(CausalRule 2)

=
∑
Z

P (Y |do(Z))P (Z|X)

(CausalRule 3)

=
∑

X′⊆X

∑
Z

P (Y |do(Z), X ′)P (X ′|do(Z))P (Z|X)

(ProbabilityAxioms)

=
∑

X′⊆X

∑
Z

P (Y |Z,X ′)P (X ′|do(Z))P (Z|X)

(CausalRule 2)

=
∑

X′⊆X

∑
Z

P (Y |Z,X ′)P (X ′)P (Z|X),

(CausalRule 3)

(1)

where X ′ ⊆ X indicates the decoupled components [6],
which is formulated as X = {Xb, Xn} in this paper.

B.2. Proof of the Deployed OSDA Adjustment (Eq. 3
in the Main Paper)

With the inherent and decoupled base-class and novel-
class regions X = {Xb, Xn} in an image, we can open the
summation symbol in Eq. 1 for unbiased OSDA, which is
denoted as follows,

P (Y |do(X)) = P (Y |Zb, Xb)P (Xb)P (Zb|X)

+ P (Y |Zn, Xn)P (Xn)P (Zn|X)

+ P (Y |Zn, Xb)P (Xb)P (Zn|X)

+ P (Y |Zb, Xn)P (Xn)P (Zb|X).

(2)

Since the global average pooling X → Z doesn’t change
the semantic role of an image [3] in the deep-learning-based

image recognition, we have P (Zb|Xb) = P (Zn|Xn) = 1
and P (Zb|Xn) = P (Zn|Xb) = 0, which can be used to jus-
tify some key items in Eq. 2. On the one hand, according
to Total Probability Theorem, the conditional probability
P (Zb/n|X) can be rewritten as follows (we use blue and
red color to highlight the zero and one value term),

P (Zb|X) = P (Zb|Xb)P (Xb|X) + P (Zb|Xn)P (Xn|X)

= P (Xb|X)

P (Zn|X) = P (Zn|Xb)P (Xb|X) + P (Zn|Xn)P (Xn|X)

= P (Xn|X)
(3)

One the other hand, the joint probability P (Zb/n, Xb/n) can
be rewritten with Bayes’ Rule, denoted as follows,

P (Zb, Xb) = P (Zb|Xb)P (Xb) = P (Xb);

P (Zn, Xn) = P (Zn|Xn)P (Xn) = P (Xn);

P (Zb, Xn) = P (Zb|Xn)P (Xn) = 0;

P (Zn, Xb) = P (Zn|Xb)P (Xb) = 0.

(4)

From the above analysis, we have the following expla-
nation in terms of P (Y |Zb/n, Xb/n). Firstly, optimiz-
ing P (Y |Zb, Xb) and P (Y |Xb) are equivalent for the
model learning since the conditioned events are equiva-
lent: P (Zb, Xb) = P (Xb). This is also satisfied between
P (Y |Zn, Xn) and P (Y |Xn) with P (Zn, Xn) = P (Xn).
Secondly, for the conditional probability P (Y |Zb, Xn) and
P (Y |Zn, Xb), we can observe that they are conditioned on
an event of probability zero: P (Zb, Xn) = P (Zn, Xb) = 0,
which can be approximated with a non-informative con-
stant [2]. Thus, these two items don’t contribute to making
the class-level decision [2] for image recognition due to its
non-discriminative property. Finally, after introducing Eq. 3
and Eq. 4 into Eq. 2, we have the simplified and deployable
front-door adjustment to achieve an unbiased OSDA:

P (Y |do(X)) = P (Y |Xb)P (Xb)P (Xb|X)

+ P (Y |Xn)P (Xn)P (Xn|X).
(5)

Hence, the key insight to correct the biased learning lies
in considering both base-class and novel-class posterior
P (Y |Xb) and P (Y |Xn), which is achieved by the proposed
Front-Door Adjustment loss LFDA.

C. Discussion and Clarification
Why ambiguous samples generate offsetting signals

in the two heads of DCA. For ambiguous (uncertain) sam-
ples, the signals of two heads of the proposed DCA mod-
ule tend to be comparable due to balanced mask entries
Mi

b ≈ Mi
n. Note that two heads adapt samples to base and

novel distribution orthogonally and respectively. Hence,
the comparable intensity of the two heads tends to prevent
incorrect adaptation to either distribution.



Explanation on FDA (Eq.5) and DCA (Eq.7) in the
main paper. 1) The relation between Eq.5/7. Though
both equations aim to discover base and novel regions
Xb/n, Eq.5 requires image labels (see Eq.4) to discover
labeled and unlabeled parts Xb = {Xlb, Xub}. Differ-
ently, Eq.7 works in a label-free manner to find Xb and Xn

in both domains, which cannot separate Xlb and Xub. 2)
Why does DCA not consider unlabeled regions? DCA
generates base-class masks Mi

b (Eq.7) to align P (Xb) =
P (Xlb, Xub), which has considered labeled Xlb and unla-
beled regions Xub. Note that DCA does not need to separate
Xlb and Xub, since it aligns the whole base-class distribu-
tion P (Xb) instead of P (Xlb/ub).

Strategy to prevent a risky selection in FDA. We first
follow Fig.4 to justify Xlb/ub/n in images, and then se-
lect Xn to generate the loss when there are more recog-
nized Xlb than Xn. The reason is that very limited Xlb can
be recognized in the early training stage, hence, most re-
gions will be wrongly assumed as Xn. This strategy avoids
wrongly assuming most samples as Xn, yielding a sub-
optimal (risky) selection. Figure 4 of the main paper illus-
trates the basic idea of region selection instead of the whole
learning procedure. With the model training, the number
of Xlb/ub will increase, and Xn will decline due to more
recognized Xlb/ub, which is shown in Table 1.

Epoch 0 1 2 3 4
|Xlb| : |Xn| 0: 49 9: 32 17:22 17:16 16:14

Table 1. Statistics of the ratio between Xlb and Xn

D. Sensitivity Analysis
Sensitivity on the feature resolution. Considering that

ANNA relies on fine-grained representation, we explore the
effect on the block resolution (Table 2) by changing corre-
sponding input image scales. With an increased feature res-
olution, more fine-grained visual blocks can be obtained in
each image to remove the bias. Our method can improve
further with the increase of feature resolution, e.g., giv-
ing a better 77.8% HOS (9×9) compared with 76.8% HOS
(7×7), showing its great potential in scene understanding.

Resolution Ar→Rw Cl→Pr
OS* UNK HOS OS* UNK HOS

7×7 74.1 79.7 76.8 64.2 73.6 68.6
8×8 76.9 77.7 77.3 64.7 76.0 69.9
9×9 76.4 79.9 77.8 63.4 78.6 70.1

10×10 80.1 74.1 77.0 64.2 76.9 70.0

Table 2. Analysis on the fine-grained visual block resolutions. A
larger resolution indicates using more blocks for unbiased OSDA.

Sensitivity on the multiple runs. As shown in Table 3.
we further report the experimental comparison with three
runs as [1] on HOS (%) to evaluate the model robustness. It
can be observed that the proposed method is able to achieve

the most robust performance with 70.6±0.2, compared with
the biased counterparts, e.g., OSBP with 64.9 ± 0.5, due
to satisfactory semantic perception with the debiasing ef-
fects. Moreover, our method also surpasses all the counter-
parts by a large margin in terms of the average performance
among several runs, indicating the promising effects of the
proposed theoretically grounded method.

STAsum [4] STAmax [4] OSBP [7] ROS [1] Anna (ours)
62.1± 2.3 61.0 ± 0.5 64.9 ± 0.5 66.5 ± 0.3 70.6 ± 0.2

Table 3. Comparison results with three runs on Office-Home.
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