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1. Additional Results
1.1. Robustness against Out-of-distribution Data

We empirically investigate the robustness of data-driven
explanations against out-of-distribution data. We evaluate
the problem on an OOD generalization benchmark image
dataset Terra Incognita [2] and a scientific tabular dataset
Urban Land [5]. For image data, we evaluate ERM [18],
GroupDRO [14] and IRM [!] methods, and leverage the
Grad-CAM [15] to generate explanations. For scientific tab-
ular data, we use the Input Gradient [!6] method to gener-
ate explanations, and leverage scientific consistency as the
metric to measure explanation quality. Tab. 1 and Tab. 2
show a more detailed comparison of each specified distri-
bution as the testing set. For image data, we can observe a
constant explanation fidelity drop on the out-of-distribution
data for all tested methods. For scientific tabular data, we
can observe a constant scientific consistency drop on the
OOD data for all continental regions.

1.2. Evaluation on Terra Incognita

In the experiment on Terra Incognita [2], additional vi-
sual comparisons on class cat and coyote are shown in
Fig. 1. Results demonstrate that our method can alleviate
the model’s reliance on spurious correlations (e.g., back-
ground pixels), and makes consistent explanations on the
out-of-distribution data.

1.3. Evaluation on VLCS

In the experiment on VLCS [4], additional visual com-
parisons on class dog and person are shown in Fig. 2. Re-
sults demonstrate that our method can alleviate the model’s
reliance on spurious correlations (e.g., background pix-
els), and makes consistent explanations on the out-of-
distribution data. Note that our explanations depict the con-
tour of the object better than other explanations.

1.4. Generalize to Different Explanation Methods

In the experiment on generalizing to different explana-
tion methods, additional visual comparisons on VLCS [4]

N iAUC 1
Method Test Distribution —ID 00D Al
Location 100 0.761 0.517 0.244
Location 38 0.780 0.644 0.136
ERM [18] Location 43 0.806 0.614 0.192
Location 46 0.783 0.560 0.223
Avg. 0.778 0.584 0.194
Location 100 0.726  0.687 0.039
Location 38 0.738 0.578 0.160
GroupDRO [14] Location 43 0.738 0.608 0.130
Location 46 0.766  0.525 0.241
Avg. 0.742 0.597 0.145
Location 100 0.575 0.489 0.086
Location 38 0.745 0.651 0.094
IRM [1] Location 43 0.539 0.438 0.101
Location 46 0.589 0.500 0.089
Avg. 0.612 0.520 0.092

Table 1. Evaluation of the explanation fidelity (iIAUC) of in-
distribution (ID) and out-of-distribution (OOD) data on Terra
Incognita [2] dataset. Each specified distribution serves as the
testing set. Note that the explanation fidelity severely dropped
on OOD data for all tested methods. Specifically, although the
IRM method performs a fewer explanation fidelity drop, its in-
distribution iAUC is much lower than other methods.

dataset are shown in Fig. 3. Results demonstrate that our
model’s advanced explainability can be generalized to a va-
riety of data-driven explanation methods, such as Integrated
Gradients (IG) [17] and Gradient SHAP [10]. Our method
significantly alleviate the model’s reliance on spurious cor-
relations (e.g., tree branches), and makes consistent expla-
nations on the out-of-distribution data. Note that our expla-
nations clearly depict the contour of the object.

2. Experimental Details
2.1. Architecture Design and Hyper-parameters

We provide additional experimental details on the two
image datasets and one scientific tabular dataset: Terra
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Figure 1. Grad-CAM explanations for images from Cat (left) and Coyote (right) classes in Terra Incognita [2] dataset. The model
trained via existing methods, such as ERM [18], Mixup [19], and CGC [1 1], not only focuses on the objects, but also distribution-specific
associations, it getting even severe on out-of-distribution data. On the contrary, our model alleviates the reliance on spurious correlations
(e.g., background pixels), and makes consistent explanations on OOD data. This figure is best viewed in color.
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Figure 2. Grad-CAM explanations for images from Dog (left) and Person (right) classes in VLCS [4] dataset. The model trained via existing
methods, such as ERM [ 18], Mixup [19], and CGC [1 1], not only focuses on the objects, but also distribution-specific associations, it getting
even severe on out-of-distribution data. On the contrary, our model alleviates the reliance on spurious correlations (e.g., background pixels),
and makes consistent explanations on OOD data. Note that our explanations depict the contour of the object better than other explanations.

Incognita [2], VLCS [4], and Urban Land [5]. Following
the settings in [6] and [9], Tab. 5 lists all hyperparameters,
their default values and random search distribution. We op-
timize all models using Adam [&].

For Terra Incognita [2] and VLCS [4], the backbone
model is “ResNet-50 [7], detailed architecture is shown in
Tab. 3.

For Urban Land [5], the backbone model is “U-
Net” [12], detailed architecture is shown in Tab. 4.

2.2. Employed Gradient-based Methods

We provide additional details of the gradient-based ex-
planation methods employed in the proposed Distribution-
ally Robust Explanations (DRE) method. Built upon our
discussions in the Related Work section of the main paper,

gradient-based explanation methods offer two properties:
(i) computation efficiency; (ii) fully differentiable and thus
can be integrated into optimization.

For scientific tabular data (Urban Land [5]), we leverage
the Input Gradient [16] to calculate explanations, because
of its fine-grained resolution and advanced explanation per-
formance on truly continuous inputs [13]. Denote x as an
input sample, the predictive model provides a scalar logit
f(z) for a particular prediction. An explanation method
g(-) calculates an explanation (e.g., heatmap) with the same
size as the input, which attributes the model’s decision to
the features with a higher score. The Input Gradient cor-
responds to the gradient of the scalar logit for a prediction
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Figure 3. Integrated Gradients (IG) [17] and Gradient SHAP [10] saliency maps for out-of-distribution data from VLCS [4] dataset. Using
VOC2007 [3] as the testing set, for ERM model the saliency maps of both Integrated Gradients (IG) [17] and Gradient SHAP [10] methods
are excessively focused on background pixels, such as branch and ground. Our explanations significantly alleviate the salience of spurious

correlations and clearly depict the contour of the object.

SC 1

Test Distribution iib) 00D Al
Africa 0.968 0.810 0.158
E. Asia 0.835 0.779 0.056
Europe 0.169 0.100 0.069
N. Africa 0.545 -0.707 1.252
N. America 0.236 -0.653 0.889
Oceania 0.944 0.855 0.089
Russia 0.257 -0.856 1.113
S. America 0.341 -0.837 1.178
S. Asia 0.520 -0.504 1.024
Avg. 0.535 -0.113 0.648

Table 2. Evaluation of the scientific consistency (SC) of in-
distribution (ID) and out-of-distribution (OOD) data on Urban
Land [5] dataset using the ERM [18] method. Note that the scien-
tific consistency severely dropped on the out-of-distribution data
for all tested distributions.

with regard to the input, namely:

Jgraa(2) = ai;f). (1)

For image data (Terra Incognita [2] and VLCS [4]), we
leverage the Grad-CAM [15] to calculate explanations. Its
superior performance has been empirically proved on tasks
such as explaining classification results and weakly super-
vised semantic segmentation. Let A* as the feature maps
of the last convolutional layer of a DNN, the neuron impor-
tance weights:

of (z)
J 8Af’j '

ot = %ZZE )

then the Grad-CAM explanation corresponds to the

layer name ‘ output size ‘
convl | 112 x 112 |

ResNet50 layers
7 x 7,64, stride 2

3 x 3, max pool, stride 2
conv2_x 56 x 56 Tx1 64
3x3, 64| x3
1x1, 256
[1x1, 128]
conv3 X 28 x 28 3x3, 128( x4
1x1, 512
[1x1, 2567
conv4 x 14 x 14 3x3, 256| x6
1x1, 1024
[1x1, 512]
conv5_x 7Tx7 3x3, 512 | x3
1x1, 2048
| 1x1 | average pool, 10-d fc, softmax
FLOPs \ 3.8 x 10°

Table 3. Architecture for Terra Incognita [2] dataset. For VLCS [4]
dataset, the only difference is to change the fc-layer to 5-d.

weighted average of feature maps of the last convolutional
layer, namely:

ggradfcam(x) = ReLU(ZkakAk) 3)
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