
Supplementary: Causally-Aware Intraoperative Imputation for Overall Survival
Time Prediction

The supplementary document is organized as follows:

- Sec. 1 makes a brief summary of terms and priories.

- Sec. 2 provides a statistical description of data.

- Sec. 3 describes the primary findings in our pilot study.

- Sec. 4 elaborates the network architectures.

- Sec. 5 provides more experimental results.

- Sec. 6 shows more visualization results.

- Sec. 7 provides the theoretical analysis.

- Sec. 8 provides some insightful discussion of the po-
tential of this work.

1. Preliminaries
In this section, we will make a brief summary of the tech-

nical terms, and medical priories related to this work.

1.1. Technical Terms

Generally, structured MRIs are typically composed of
the following six modalities:

• T1-WI: T1-weighted imaging T1.

• T2-WI: T2-weighted imaging T2.

• DWI: Defusion weighted imaging.

• ADC: Apparent deffusion coefficient.

• T1-IP/OP: T1 in phase / out of phase.

• T1ce: Contrast-enhanced T1 at the arterial phase
(T1ce-AP), portal phase (T1ce-PP), and lag phase
(T1ce-LP).

The surgery-related indicators and the abbreviations are as
follows:

• AFP: Alpha-fetoprotein.

• TBil: Total bilirubin.

• ALT: Alanine aminotransferase.

• GGT: Gamma-Glutamyltransferase.

• HBs-Ag: Hepatitis B virus surface antigen.

• HBV-DNA: Hepatitis B DNA.

• HCV-Ab: Hepatitis C virus antibody.

• PT: Prothrombin time.

• G-Score: A metric for evaluating the severity of in-
flammation. According to Metavir scoring system [1],
it has five levels from G0 to G4.

• S-Score: A metric for evaluating the severity of fibro-
sis. According to Metavir scoring system, it has five
levels from S0 to S4.

1.2. Medical Priories

Magnetic Resonance Imaging (MRI). MRI is an imag-
ing method that radiates energy from substances in the body
to the surrounding environment through high-frequency
magnetic field in vitro [3]. Generally speaking, MRI is
the most important reference for the early diagnosis of liver
cancer. The appearance of the tumor will show different
brightness or contrast against the whole liver on different
modality of MRI, which provides the most significant indi-
cation for doctors to judge the priority of cancer at the stage
of early diagnosis.

Surgery-related indicators. In fact, the overall treat-
ment cycle for primary liver cancer tend to extend from
years up to several decades, in which tumor resection
surgery is only one of those complex procedures. Taking
the first surgery as the dividing line, we summarize all indi-
cators into three categories:

• Preoperative – collected before the surgery.
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• Intraoperative – collected during the surgery.

• Postoperative – collected after the surgery.

Concretely, in addition to the patient’s basic information
e.g. age and gender, the preoperative indicators mainly de-
rive from the results of blood tests e.g. alpha-fetoprotein,
hepatitis B antigen test, and hepatitis C antigen test, etc,.
The intraoperative indicators include direct records during
the surgery e.g. tumor number, operation duration, bleed-
ing, etc, and pathological analysis results obtained from
samples collected during the surgery e.g. cell type, dif-
ferentiation, clinicopathological cirrhosis, Metavir Metrics,
etc,. Postoperative information includes the adjuvant ther-
apy adopted by the doctor and the recurrence of the patient.

Typical diagnostic process of liver cancer. A typical di-
agnostic process of liver cancer usually begins with the pa-
tient’s report of symptoms (e.g. abdominal pain) and abnor-
mity in blood test indicators (e.g. high alpha-fetoprotein).
Combined with MRI, doctors are supposed to pass judge-
ment on the severity of the tumor, and thus make a basic
estimation on the overall survival (OS) time, e.g. longer or
shorter than five years. However, on one hand, the informa-
tion available for early diagnosis is too limited. On the other
hand, there are too many uncertain factors in the whole span
from early diagnosis to cancer-related death, such as the sur-
gical level, adjuvant therapy, and the lifestyle of the individ-
ual. These factors make it difficult for doctors and clinicians
to make an accurate and confident estimation on OS time.

2. Data Description

In this section, we will provide a statistical feature de-
scription for either numeric (Tab. 1) and categorical vari-
ables (Fig. 1) available in our own dataset. As far as we
know, there is NO open source tumor dataset that contains
sufficient intraoperative information. Therefore, we unfor-
tunately cannot test our proposed method on any classical
data set for the time being. Note that, the dataset on which
we train and test is basically in-house, and will NOT be
open source in the short run.

There are a total of 11 preoperative and 20 intraopera-
tive variables in our dataset. All the preoperative variables
except Gender are in numeric type. 11 of the intraopera-
tive variables are in categorical type, while 9 are in numeric
type. We performed feature statistics on the 361 samples
after primary screening. Tab. 1 shows the statistical feature
description of all the preoperative and intraoperative vari-
ables of numeric type, in terms of Min, Max, Mean, and
Std. Fig. 1 shows the distribution of categorical variables,
with the number of samples in each category.

Table 1. Statistical Feature Description of Numeric Variables.

Variable Attribute Min Max Mean±Std
Age 21 85 53.7±11.7
AFP 1.0 60500.0 1726.7±8115.6

Albumin 32.0 50.8 40.8±3.1
TBil Preoperative 3.8 38.2 12.2±5.0
GGT 11.0 955.8 77.1±88.9

HBs-Ag 0.0 10334.0 4591.6±3108.6
HBV-DNA 1.6e3 1.7e6 (1.5±2.4)e5-
HCV-Ab 0.0 28.0 0.2±0.2

PT 10.2 21.0 12.2±1.0
Ascites 0.0 200.0 2.6±14.6

Cirrhosis Nodules 0.1 0.9 0.4±0.1
Tumor1 Diameter 0.6 19.0 4.1±2.7
Tumor2 Diameter 0.3 5.0 1.7±1.0
Tumor3 Diameter Intraoperative 0.2 2.5 1.0±0.6

Sum of Tumor Diameter 0.6 21.3 4.4±3.0
Boundary 0.8 3.0 1.9±0.9

Vessel Bleeding 0.0 1000.0 151.1±133.5
Portal Occlusion 0.0 15.0 6.2±6.6

3. Pilot Study
In this section, we will describe the findings in our pilot

study. Our proposed model (CAWIM) and novel methodol-
ogy (CaDAG) are basically motivated by these preliminary
conclusions.

3.1. Experiments

OS time prediction. We set a baseline model using only
MRI and preoperative information for the OS time classi-
fication model and trained on a single fold with T1ce-AP
modality as MRI+Pre. On the other hand, we use only
ground-truth intraoperative indexes for both training and
testing, as (gt)Intra. Then we directly applied ground-truth
intraoperative information to the model MRI+Pre by con-
catenating the indexes together, as MRI+Pre+(gt)Intra.

Correlation of intraoperative indexes. We are in-
formed that the intraoperative indexes are related with one
another. So, we calculated the correlation coefficient be-
tween each pair of intraoperative variables after zero-mean
normalization.

3.2. Primary Findings

Significance of intraopertive indexes. Tab. 2 shows
the performance of (a) MRI+pre, (b) (gt)Intra, and (c)
MRI+Pre+(gt)Intra. We found that intraoperative indica-
tors should play a crucial role in improving OS time predic-
tion, with the support of the facts as follows:

• Using only intraoperative indexes (row (b)) can im-
prove the model performance by 5.25% compared to
the baseline model (row (a)) on F1-score.

• Concatenating all the feature indexes together boosts
the optimal performance (row (c)) by a promotion of
9.11% compared to using MRI and preoperative in-
dexes (row (a)), and 3.86% to using only intraoperative
indexes (row (b)).
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Figure 1. Statistical Feature Description of Categorical Variables.

Table 2. Model Performace on a SINGLE Fold with Ground Truth
Intraoperative Indexes on T1-ce AP modality.

Model Precision Recall F1-Score
(a) MRI+Pre 37.86 34.32 35.02
(b) (gt)Intra 45.42 44.78 40.27
(c) MRI+Pre+(gt)Intra 54.58 46.06 44.13

Correlation of intraopertive indexes. We found that there
are adequate but intricate correlations between certain pairs
of intraoperative variables. Fig. 2 shows the correlation
heatmap of all the intraoperative indexes available to us. We
observed the following facts:

• Among all the variables, the most notable positive cor-
relation is observed between Sum of Tumor diameter
and Tumor1 diameter (r = 0.83), as well as G-score
and S (r = 0.83).

• There are relatively obvious correlation between Hep-
atocirrhosis and Cirrhosis nodes (r = 0.54), Number
of tumors and Tumor2 diameter (r = 0.58), Number
of tumors and (Tumor3 diameter) (r = 0.63), Tumor2
diameter and Tumor3 diameter (r = 0.49).

• Among all the negatively correlated variable pairs, the
correlation coefficients between Blood transfusion and
G-score (r = −0.41) as well as S-score (r = −0.36)
are the most prominent.

3.3. Interpretation and Analysis

The validity of intraoperative information lies in that it
is collected during the operation and often better describes
tumor related characteristics than those at the earlier stage
e.g. MRI images and preoperative information. Therefore,
it can better indicate OS time when directly applied to the
classification model. However, the intraoperative indexed
cannot be obtained during at the early stage, thus cannot be
leveraged in the inference phase.

On the other hand, most of the correlation we observe are
in line with common sense, or can be explained by medical
prior knowledge. i.e. the correlation between the diameter
of each tumor and the sum of them all is in line with com-
mon sense. While most of the patients (64.8%) only have
one tumor, Tumor1 diameter should contribute most to Sum
of Tumor diameter; G-score and S-score are naturally highly
correlated, according to the definition by Metavir scoring
system representing respectively for the level inflammation
and fibrosis. Nevertheless, it is hard to explain the negative
correlation between Blood transfusion and either Metavir
metric (G-score and S-score), to our best known.

4. Network Architectures
We removed the final fully-connect layers of the official

Resnet-34 network as our image encoder. In causally-aware
intraoperative reasoning, we used FC-BN-RELU (Fully-
connect layer, batch norm and RELU activation) to down-
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Figure 2. Correlation Heatmap of all Intraoperative Indexes.

sample the image feature to 85 dimension and then concate-
nated it with 11 preoperative features to predict the intraop-
erative variables, where we utilized a single fully-connect
layer as our predict netwotk. Besides, we also used similar
structure to predict the OS time. We firstly employed FC-
BN-RELU to downsample the image feature to 85 dimen-
sion and then concatenated it with 11 preoperative features
and other prediceted intraoperative features to predict the
OS time.

5. More Results

In this section, we provide more experimental results
based on our proposed CAWIM.

Different modalities. We apply our CAWIM on each
modality of MRI, i.e. (a) T1-IP, (b) T1-WI, (c) T2-WI, and
(d) T1ce-AP. The results are shown in Tab. 3. We found
that the T1ce-AP performs best on Precision (45.58%) and
F1-score (42.21%), while T1-WI best on Recall (45.61%).
Therefore, we decide on T1ce-AP to conduct subsequent
experiments.

Theoretical upper-bound. Intuitively, training the
model with ground-truth intra-operative information can
reach a theoretical upper-bound to our approach. The re-

Table 3. The Average Model Performance on FIVE Folds on Dif-
ferent Modalities of MRI.

Modality Precision Recall F1-score
(a) T1-IP 33.74 37.81 32.90
(b) T1-WI 40.19 45.61 41.32
(c) T2-WI 32.65 34.50 31.31
(d) T1ce-AP 45.58 43.70 42.21

Table 4. Theoretical upper-bound of our proposed method.

Model Precision Recall F1-Score
MRI + Pre. + Intra. (GT) 50.11±3.56 42.31±2.50 42.23±1.37

Ours 45.58±5.86 43.70±5.89 42.21±4.92

sults are listed in Tab. 4. Our model performs slightly below
this theoretical upper limit. It is intuitive and reasonable, as
the gap is attributed to the error in the intermediate process
of predicting intra-operative information. This further veri-
fies the efficacy of our method.

Other baselines. Tab. 5 shows some other baselines
from previous work. It can be seen that our CAWIM per-
forms much better than these methods.



Table 5. Other baselines.

Model Precision Recall F1-Score
MCAN [9] 32.45 33.16 32.78
MBT [6] 35.65 37.23 36.40
GCN [4] 25.96 23.74 22.47
Bilinear Pooling [5] 34.75 35.06 34.19
Ours 45.58 43.70 42.21

6. More Visualization
In this section, we provide more visualization results

to demonstrated the effectiveness of our model. Fig. 3
shows the high-response area with and w/o our CaDAG.
Fig. 4 shows the developing process of high-response area
in the training phase, in which the high-response area grad-
ually focuses on the liver and tumor related areas with the
progress of the training process. It can be drawn that our
CaDAG managed to guide the model to locate on liver-
related regions.

7. Theoretical Analysis
For completeness, we first introduce basic assumptions

and the algorithm for identifying Mi in the i-th random
splitting, in our main context.

Assumption 1 (Causal Graph). We assume the causal
graph over C is a directed acyclic graph (DAG) and denote
the corresponding SCM as M := ⟨G := (C,E),F , P (ε)⟩.

Assumption 2 (Markovian and Faithfulness). For triplets
of disjoint sets Vi,Vj ,Vk, it holds that Vi ⊥d Vj |Vk ↔
Vi ⊥ Vj |Vk, where ⊥d and ⊥ respectively mean d-
separation and probability independence.

Assumption 3 (Distributional Faithfulness). If Xi → Xj

and at least E → Vi or E → Vj holds, {P e(Vi|Vj ,Z)}
is dependent to {P e(Vj |Z)}, where Z denotes the minimal
deconfounding set 1.

Algorithm 1 Identify causal directions among M.

INPUT: E; skeleton and M via Alg. 1 in main context.
OUTPUT: Directed graph among M.

1: For each adjacent (Ai, Aj) such that one of Vi ∈ M,
2: Detect deconfounding set Z.
3: Calculate ∆̂Ai→Aj |Z,E > α and ∆̂Aj→Ai|Z,E > α.
4: Determine Ai → Aj or Aj → Ai.

Lemma 1. Under assumps 1-3, for each random splitting
i, we have that Mi,De(Mi),PA(Mi),PA(De(Mi)) are
identifiable.

1Z is a deconfounding set between Vi and Vj if Vi ⊥ Vj |Z and Z ∩
(De(Vi) ∪De(Vj)) = ∅.

(b)
w/o CaDAG

(i)

(c)
with CaDAG

(a)
Original MRI

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Figure 3. More Results Visualization of Heat Maps [8] with and
w/o CaDAG.

Proof. Identification of Mi has been shown in Alg. 1. We
first show the identification of De(Mi).

• Line 5 to 10 are based on (i) the structure E → · · · →



Figure 4. Visualization of the Development of High-response Area with CaDAG during Training.

Algorithm 2 Detection of De(Mi) ∪Mi

1: Start with C = D=Mi and visited(Vi) =FALSE
2: while D ̸= ∅ do
3: for Aj ∈ D do
4: for Ai ∈ Adj(Aj) do
5: if Ai ̸∈ Mi and Ai ⊥ E|Ce,xi ∪{Aj}\Dai,e then
6: C=C ∪ {Ai}
7: if visited(Ai) =FALSE then
8: D = D ∪ {Ai}
9: end if

10: end if
11: if Ai ∈ Mi and ∆̂Aj→Ai < ∆̂Ai→Aj then
12: C=C ∪ {Ai}
13: if visited(Ai) =FALSE then
14: D = D ∪ {Ai}
15: end if
16: end if
17: end for
18: Let D = D \ {Aj}
19: end for
20: end while

Aj −Ai and (ii) Ai and E are not adjacent.

• Line 11 to 19: In this case, we identify the direction
between Ai and Aj by the “Independent Causal Mech-
anism (ICM) Principle” following [2], where ∆̂Aj→Ai

and ∆̂Ai→Aj
are the estimated HSIC (see Eq. 17 in [2]

for the detailed formulation of ∆̂).

The ICM principle means that “the conditional distri-
bution of each variable given its causes (i.e., its mech-
anism) does not inform or influence the other mecha-
nisms.”. That is, the changes of P (Ai|PA(Ai)) does
not influence the other mechanisms P (Aj |PA(Aj))
for j ̸= i. The ICM principle is implied in the defi-
nition of “structural causal model” in [7], where each
structural equation represents an autonomous physical
mechanism.

Next, we identify PA(Mi),PA(De(Mi)).

Algorithm 3 PA(Ai) for Ai ∈ Mi ∪De(Mi).

1: for Aj ∈ Mi ∪De(Mi) do
2: for Ai ∈ Adj(Aj) do
3: if Ai ̸∈ Mi then
4: Ai ∈ PA(Aj) if Ai ̸⊥ E|

{
Ce,Ai \De,Ai ∪ {Aj}

}
5: else if Aj ∈ Mi and Ai ∈ Xm then
6: Ai ∈ PA(Aj) when ∆̂Aj→Ai < ∆̂Ai→Aj .
7: else if Aj ∈ Mi and Ai ̸∈ Xm then
8: Ai ∈ PA(Aj) when E ̸⊥ Ai|CAi,e ∪ {Aj}
9: end if

10: end for
11: end for

• Line 4: this rule is based on the structure E → · · · →
Aj −Ai and {Ai, E} are not adjacent.

• Line 6: this rule is based on the HSIC criterion in [2].

• Line 8:this rule is based on the structure E → Ai−Aj

and {E,Aj} are not adjacent.

Theorem 2. Under assumptions 1, 2, 3, the learned graph
via our CaDAG is a directed acyclic graph.

Proof. For each random splitting i, we can detect edges that
are adjacent to Mi. Then as long as m is large enough
such that ∪iMi = A, we can identify all edges among A.
This can be achieved by randomness of random splittings.
In other words, for each variable A ∈ A, there exists a
random splitting such that the domain variable is dependent
to A. It is left to show that the learned graph is a DAG.
If the learned DAG has cycles Ai1 → Ai2 → ... → Ai1 ,
we orient (Aik , Aik+1

) with the minimum frequency among
{fik,ik+1

, fiN ,i1}. If this orientation induces another cycle,
then we repeat our orientations, until there is no cycle in our
learned graph.



8. Potential of Transfer Learning
In this work, we proposed a general framework for OS

time prediction that leveraged the causality of the intra-
operative information. Although we had conducted ade-
quate research on medically relevant preliminaries, our pro-
posed CaDAG methodology is essentially data-driven. In
other words, the causal relationship among the intraopera-
tive variables are actually mined from the original data with
limited artificial interference. On the contrary, the causal
structure inferred from the CaDAG can further be consid-
ered as prior knowledge to guide the prediction of deep
learning models. Therefore, we believe that the methodol-
ogy of CAWIM can be transferred to various tasks in other
fields with little or simple fine-tuning.
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