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In the supplementary material, the implementation de-
tails, extensive ablation studies, and some representative vi-
sualization results are shown in section 1, section 2, and
section 3, respectively.

1. Implementation Details

In this section, we illustrate the detailed architectures of
the feature enhancement module in the proposed CFFE and
the CFNet framework with the backbone of the CPGNet [7].

Feature enhancement module. As shown in Fig. 1,
the feature enhancement module (FEM) fuses the seman-
tic feature maps F';°"" and the re-projected shifted center

feature maps F'," to generate center-focusing semantic
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feature maps and instance feature maps
(m is the specific 2D view, such as RV [1,9, 12], BEV [4],
and polar view [15].), which are used by the subsequent
semantic and instance branches for more accurate predic-
tions. Specifically, it first concatenates the two feature
maps. Then, the concatenated feature maps undergo three
convolution layers, where the dilation coefficients are set
as 1, 2, and 4, respectively, to enlarge the receptive field.
In the experiments, it is found that a larger receptive field
can improve performance. Finally, the outputs of the three
convolution layers are concatenated and then undergo two
extra convolution layers to get semantic and instance fea-
ture maps, respectively. In our implementation, C5 denotes
the number of output channels of the corresponding 2D
projection-based backbone. C3 and C are set as 64 and
48, respectively.

CFNet with the backbone of the CPGNet. Fig. 2
presents the proposed CFNet with the backbone of the
CPGNet [7], which is a powerful and efficient multi-view
fusion backbone and consists of the 2D projection-based
bird’s-eye view (BEV) and range view (RV) branches.
Fig. 3 shows the corresponding center focusing feature en-
coding (CFFE) that is integrated with the CPGNet [7] back-
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Figure 1. The feature enhancement module in the proposed CFFE.
“Conv” represents a 2D convolution with 3 x 3 kernels, a batch
normalization, and a ReLU layer. dilation denotes the dilation
coefficient of the 2D convolution and is set as 1 unless specified.

bone. These two modules are similar to those of the single-
view backbone but add another view to alleviate the infor-
mation loss during 2D projection.

As shown in Fig. 2, for efficiency, only one stage version
of the CPGNet is adopted in our CFNet. In the CPGNet,
the P2G operation aims to project the LiDAR point features
onto the BEV and RV feature maps. Specifically, C; and
Cy are set as 64. Hp and W), are set as 600. H, and W,
are set as 64 and 2048, respectively. The 2D FCN extracts
features on each view. On the contrary to the P2G, the G2P
operation transmits the features from each view back to the
LiDAR points. The PF is responsible for fusing the features
from the 3D points, BEV, and RV to generate point-wise
features for the following predictions. For the details of the
CPGNet backbone, please refer to the CPGNet [7].
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Figure 2. The overview of our CFNet with the backbone of the CPGNet [7].
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Figure 3. The proposed center focusing feature encoding (CFFE) that is integrated with the CPGNet [7] backbone. The “Conv” represents
a 2D convolution with 3 x 3 kernels, a batch normalization, and a ReL.U layer. The details of the semantic branch and instance branch are
shown in Fig. 2. The blue arrows are coordinate-related operations.

2. Ablation studies

In this section, the ablative experiments are enriched for
a comprehensive understanding of our CFNet.



| Methods | Backbone | PQ PQT PQ™ PQ°" mloU
a | CFNet [Ours] 627 675 700 573 674
CFNet [Ours]; dilation =1 | CPGNet [7] | 622 66.7 685 572 67.1
¢ | CFNet [Ours]; GT Offsets 655 697 764 575 69.5

Table 1. Ablation studies on the SemanticKITTI validation set. dilation = 1 denotes that all dilation coefficients in the feature enhance-

ment module (FEM) are set as 1. “GT Offsets” means that the center feature generation (CFG) generates the re-projected feature maps
F;27,, according to the ground-truth center offsets instead of the predicted ones.

distance threshold d 0 02 | 04 | 06 | 0.8 1.0 1.2 1.4 1.6 1.8 | 20 | 22 | 24

car 204 | 643 1904 | 942 | 949 | 95.1 | 95.2 | 95.2 | 952 | 95.2 | 95.2 | 95.0 | 94.6

truck 4.7 1292 406 | 595 | 71.3 | 71.7 | 719 | 719 | 71.9 | 71.5 | 70.8 | 70.0 | 68.9

person 16.6 | 76.9 | 84.7 | 85.5 | 85.5 | 849 | 83.3 | 82.7 | 81.9 | 81.0 | 79.9 | 77.8 | 76.8

bicycle 10.2 | 42.3 | 55.3 | 58.0 | 58.6 | 58.2 | 58.2 | 58.1 | 57.8 | 57.2 | 56.4 | 56.1 | 55.9

Table 2. Different values of distance threshold d in the proposed center deduplication module (CDM) on the SemanticKITTI validation set.

Different configurations of the CFFE. As shown in
Table 1, row (a) is the proposed CFNet with the backbone
of the CPGNet [7]. Row (b) is that all dilation coefficients
in the feature enhancement module (FEM) are set as 1. Row
(c) denotes that the center feature generation (CFG) gener-
ates the re-projected feature maps Fff_’fm according to the
ground-truth center offsets instead of the predicted ones. It
can be discovered that: 1) the larger receptive field results
in the better performance (a,b); 2) the ground-truth cen-
ter offsets facilitate the biggest performance improvements
(a,c), which illustrates the importance and upper bound of
the CFFE.

Distance threshold d on different classes. To figure
out the effects of the distance threshold d, Table 2 shows
the distance threshold d versus the PQ metric on some rep-
resentative classes. The car and truck denote large objects,
while the person and bicycle are small objects. The car and
truck get the best PQ when the distance threshold d is in the
range of 1.2 to 1.6. The person and bicycle get the highest
PQ when the distance threshold d is set as 0.8. Thus, the
optimal distance threshold d varies from different classes.
However, when d is set as 0.8 in the main body, the perfor-
mances of different classes are comparable to the optimal
ones.

Comparison results on the nuScenes test set. As
shown in Table 3, the proposed CFNet can be compa-
rable with the state-of-the-art Panoptic-PHNet [0] on the

Methods [ PQ PQT SQ RQ [ mloU
EfficientLPS [11] 624 660 837 741 66.7
Panoptic-PolarNet [ 16] 63.6 67.1 843 751 | 67.0
Panoptic-PHNet [0] 80.1 82.8 91.1 87.6 | 802
CFNet [Ours] w/CPGNet [7] | 79.4 81.6 90.7 87.0 | 83.6

Table 3. Comparison results on the nuScenes test set.

nuScenes test set. However, the proposed CFNet runs much
faster, as referred to the Table 3 of the main body.

3. Visualization

In this section, our CFNet with the backbone of the
CPGNet [7] is inferred on the SemanticKITTI test set.

Comparison visualization results. We run the official
code of the Panoptic-PolarNet [ 16] and DS-Net [2] with the
provided model parameters on the SemanticKITTT test set.
For better visualization comparison, it only presents the in-
stance segmentation results in Fig. 4. It can be observed
that the over-segmented and under-segmented problems fre-
quently occur in the Panoptic-PolarNet and DS-Net, while
our CFNet can avoid this problem. By the way, the over-
segmented problem means that an instance is split into sev-
eral parts and the under-segmented problem means that ad-
jacent instances are predicted as a single instance.

Visualization results. We present more visualization
results of our CFNet on the SemanticKITTT test set in Fig. 5.
Our CFNet can distinguish adjacent objects. Besides, the
boundaries of instances can be accurately segmented.
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Figure 4. Comparison visualization results of the instance segmentation from the Panoptic-PolarNet [16], DS-Net [2], and our CFNet on
the SemanticKITTI test set. The black box marks the region of interest.
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Figure 5. Visualization results of our CFNet on the SemanticKITTI test set. For semantic and instance segmentation, different colors
represent different classes and instances, respectively.
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