
Correlational Image Modeling for Self-Supervised Visual Pre-Training
—Supplementary Material

A. Appendix
In the supplementary material, we provide the detailed pre-training and fine-tuning recipes in Section A.1. Section A.2

provides more qualitative visualization for exemplar-context images and predicted correlation maps.

A.1. Implementation Details

Pre-training. Table 1 summarizes the pre-training settings for vanilla ViT and ResNet-50 models. All experiments are
conducted on 8 A100 GPUs for both ViT and ResNet-50 models. Our CIM is general across architectures that the configurations
are shared by different architectures, without specialized tuning.
Fine-tuning. Table 2 and Table 3 summarize the fine-tuning settings for vanilla ViT and ResNet-50 models, respectively. The
configurations for ViT are shared across models. The configurations for ResNet-50 basically follow [16], using the AdamW
optimizer following [8].
Semantic segmentation on ADE20K. Following the configurations in BEiT [1], we fine-tune UperNet [17] using AdamW as
the optimizer for 160K iterations with a batch size of 16. The input resolution is 512× 512, and we use single-scale inference.
Following the common practice of BERT [6] fine-tuning in NLP [12], we initialize all segmentation models using model
weights after supervised fine-tuning on ImageNet-1K as suggested in BEiT [1].

Table 1. Pre-training settings for vanilla ViT-S/16, ViT-B/16 and ResNet-50 models on ImageNet-200 and ImageNet-1K. Note that we
adopt the same pre-training configurations across different architectures without further parameter tuning.

Configuration Value

Optimizer AdamW [11]
Pre-training epochs 300
Peak learning rate 2.4e-3
Batch size 4096
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.95 [3]
Learning rate schedule Cosine decay
Warmup epochs 40
Gradient clipping 1.0
Dropout [13] ✗

Stochastic depth [10] ✗

LayerScale [15] ✗

Data augmentation RandomResizedCrop
Pos. emb. in Transformer layers 1-D absolute pos. emb. [7]
Patch size 16
Pre-training resolution of context image 160
Pre-training resolution of exemplar image 64
Number of exemplars 6
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Table 2. Fine-tuning settings for vanilla ViT-S/16 and ViT-B/16 on ImageNet-200 and ImageNet-1K. We fine-tune ViT-S/16 for 200
epochs, and ViT-B/16 for 100 epochs. All other hyper-parameters are the same.

Configuration Value

Optimizer AdamW [11]
Fine-tuning epochs 200 (S), 100 (B)
Peak learning rate 9.6e-3
Layer-wise learning rate decay [1] 0.8 [4]
Batch size 2048
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Learning rate schedule Cosine decay
Warmup epochs 5
Loss function Cross-entropy loss
Gradient clipping ✗

Dropout [13] ✗

Stochastic depth [10] 0.1
Mixup [19] 0.8
Cutmix [18] 1.0
Label smoothing [14] 0.1
Random augmentation [5] 9 / 0.5
Patch size 16
Fine-tuning resolution 224
Test resolution 224

Table 3. Fine-tuning settings for vanilla ResNet-50 on ImageNet-1K. The hyper-parameters generally follow [16], except that we adopt
the AdamW optimizer following [8].

Configuration 100 epoch FT 300 epoch FT

Optimizer AdamW [11]
Peak learning rate 12e-3
Layer-wise learning rate decay [1] ✗

Batch size 2048
Weight decay 0.02
Learning rate schedule Cosine decay
Warmup epochs 5
Loss function Binary cross-entropy loss
Gradient clipping ✗

Dropout [13] ✗

Stochastic depth [10] ✗

Mixup [19] 0.1
Cutmix [18] 1.0
Label smoothing [14] 0.1 ✗

Repeated augmentation [2, 9] ✗ ✓

Random augmentation [5] 6 / 0.5 7 / 0.5
Fine-tuning resolution 160 224
Test resolution 224
Test crop ratio 0.95

A.2. More Visualization

We provide more qualitative visualization of exemplar-context images together with both ground-truth and predicted
correlation maps for CIM in Figure 1, using unseen ImageNet-1K validation images.



Figure 1. Visualization of exemplar-context images in company with both ground-truth and predicted correlation maps for CIM.
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