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In this supplementary material,
1. we provide more details about the network architectures in Sec. 6 (footnote 5 in the main paper);

2. we show the complete qualitative comparison of 10 objects from DILIGENT [12] dataset between DANI-Net and other
state-of-the-art methods [4, 6, 7] in Sec. 7 (footnote 9 in the main paper); we also conduct additional experiments to
validate the effectiveness of our normal fitting method and visualize the generated svBRDF in this section (footnote 3
in the main paper);

3. we conduct more ablation studies about our three-stage training schema and silhouette loss in Sec. 8 (footnote 7 in the
main paper);

4. we show the complete quantitative comparison of 100 objects (i.e., 10 shapes multiplying 10 different materials) from
DILIGENT10? dataset [11] and visualization of the fitted material on 2 selected shapes (i.e., BALL, BUNNY) with 3
anisotropic materials (i.e., AL, CU, and STEEL) in Sec. 9 (footnote 11 in the main paper); we also analyze the effects
of different initialization methods in this section (footnote 12 in the main paper);

5. we show the qualitative and quantitative results on 3 objects from APPLE & GOURD dataset [1] and 6 objects from
LIGHT STAGE DATA GALLERY dataset [2] in Sec. 10 (footnote 8 in the main paper).

The code is available at https://github.com/LMozart /CVPR2023-DANI-Net.
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6. Implementation Details
Positional encoding. We apply the same positional encoding module in NeRF [$]' given the following equation,
E(p) = (sin (207rp) , COS (207rp) o+, sin (2L*17rp) , COS (2L*17rp)) , (10)

where L is the dimension of the positional code, p is 2D coordinate (u;,v;) in the image plane for DepthMLP and Mate-
rialMLP. We compute the positional code F(p) for each dimension and concatenate these codes to get our positional code.
Network structure. We show the details of the DepthMLP and MaterialMLP in Fig. 7. We use the same pre-trained light

model as [7] for light initialization. More details of the pre-trained light model can be found in the supplementary materials
of SCPS-NIR [7].
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Figure 7. Network structures of DepthMLP and Material MLP.

'https://github.com/facebookresearch/pytorch3d/tree/main/projects/nerf
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7. Additional Results on DILIGENT Dataset [12]

Qualitative results on DILIGENT dataset [12]. From Fig. 8 to Fig. 11 we show the normal map, error map, and light map
of 10 objects from DILIGENT Dataset [ | 2] predicted by DANI-Net and its alternatives (i.e., DANI-Net w [25] and DANI-Net
w/o s). We further compare DANI-Net with recent UPS methods [4, 7] and state-of-the-art unsupervised PS methods [6].
The results illustrate the effectiveness of the differentiable shadow handling and anisotropic material modeling method in
DANI-Net.
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Figure 8. The visual quality comparison among DANI-Net, DANI-Net w [25], DANI-Net w/o s, SCPS-NIR [7], CW20 [4], and LL22 [6]

on BALL and BUDDHA from DILIGENT [12] in terms of normal map (row 1,4), error map (row 2, 5), and light map (row 3, 6). Numbers
indicate the MAE (for surface normal or light directions) or scale-invariant relative error (for light intensity).
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Figure 9. The visual quality comparison among DANI-Net, DANI-Net w [25], DANI-Net w/o s, SCPS-NIR [7], CW20 [4], and LL22 [6]
on BEAR, CAT, and HARVEST from DILIGENT [12] in terms of normal map (row 1, 4, 7), error map (row 2, 5, 8), and light map (row 3,
6, 9). Numbers indicate the MAE (for surface normal or light directions) or scale-invariant relative error (for light intensity).
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Figure 10. The visual quality comparison among DANI-Net, DANI-Net w [25], DANI-Net w/o s, SCPS-NIR [7], CW20 [4], and LL22 [6]

on GOBLET, POT1, and POT2 from DILIGENT [12] in terms of normal map (row 1, 4, 7), error map (row 2, 5, 8), and light map (row 3,
6, 9). Numbers indicate the MAE (for surface normal or light directions) or scale-invariant relative error (for light intensity).
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Figure 11. The visual quality comparison among DANI-Net, DANI-Net w [25], DANI-Net w/o s, SCPS-NIR [7], CW20 [4], and LL22 [6]
on READING and COWw from DILIGENT [12] in terms of normal map (row 1,4), error map (row 2, 5), and light map (row 3, 6). Numbers

indicate the MAE (for surface normal or light directions) or scale-invariant relative error (for light intensity).



Validation of weighted interpolation. To validate the effectiveness of our weighted interpolation for normal fitting, we
compare DANI-Net with ‘DANI-Net w sobel’ (i.e., Sobel operator), ‘DANI-Net w cross’ (i.e., method in [6]), and ‘DANI-
Net w triangle’ (i.e., method in [9]). Those alternatives are only different in the normal fitting method. As shown in Table 6,
DANI-Net outperforms all alternatives on average, especially on objects like HARVEST with a complicated shape. We observe
a similar performance between ‘DANI-Net w sobel” and ‘DANI-Net w cross’, whose average MAE on normal estimation
increase 0.15° and 0.09°, respectively since they either ignore query point’s information or using excessive neighbor points.
The average MAE of ‘DANI-Net w triangle’ increase about 0.39° due to its ineffectiveness in backpropagation (i.e., limit
points affected by the gradients).

Table 6. Quantitative comparison in terms of MAE of surface normal on DILIGENT benchmark dataset [12] for different normal fitting
methods. Bold numbers indicates the best results.

Method BALL BEAR BUDDHA CAT Cow GOBLET HARVEST Potl PoTt2 READING AVG
DANI-Net w triangle 2.33 4.27 9.19 4.87 5.65 7.44 15.22 6.61 5.69 8.01 6.93
DANI-Net w sobel 1.89 3.97 9.05 4.71 5.31 7.27 14.85 6.72 542 7.68 6.69
DANI-Net w cross 1.88 3.98 9.08 4.70 5.36 6.67 14.93 6.63 5.43 7.68 6.63
DANI-Net 1.65 4.11 8.69 4.73 5.52 6.96 13.99 6.41 5.29 8.08 6.54

Validation of svBRDEF. To validate the spatially varying BRDF (svBRDF) generated by DANI-Net, we visualize the
BRDF spheres at different points of HARVEST, READING, and POT1 in Fig. 12. The spheres show polychrome appearances
with different roughness, demonstrating the visually pleasant svBRDF generated by DANI-Net.
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Figure 12. Visualization of the estimated svBRDF on HARVEST, READING, and POT1 from DiLiGenT dataset [12]. On each object, we
select four points (red dots on the first column’s images, labeled ABCD) at different positions with different materials to showcase the
predicted svBRDF spheres. The overall intensity of the observed images and BRDF spheres is scaled for better visualization.
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8. Additional Ablation Studies
8.1. Three-stage Training Schema

The smoothness terms incorporated in the three-stage training schema (i.e., Lra, Ly, and L) facilitate DANI-Net’s
convergence at an early stage (stage 1); while they are gradually dropped in the subsequent stage (stage 2, 3) to avoid over-
smooth results. To validate the effectiveness of the three-stage training schema, we compare DANI-Net with: 1) ‘DANI-Net
w Ly’ that keeps Ly till the training complete; 2) ‘DANI-Net w/o L’ that drops material smoothness term (i.e., Lra) at
the beginning on DILIGENT dataset [12]; 3) ‘DANI-Net w/o Ly + Ly’ that drops geometry smoothness terms (i.e., £y and
Ly ) at the beginning. As shown in Table 7, the average MAE of normal estimation on 10 objects increases 0.22°, 0.28°, and
0.10° for ‘DANI-Net w L, ‘DANI-Net w/o Lra’, and ‘DANI-Net w/o L + Ly’ , respectively, indicating the necessity of
the three-stage training schema.

Table 7. Quantitative comparison in terms of MAE of surface normal on DILIGENT benchmark dataset [12] for different alternatives on
three-stage training schema. Bold numbers indicates the best results.

Method BALL BEAR BUDDHA CAT Cow GOBLET HARVEST Potl PoT2 READING AVG
DANI-Netw L 1.57 4.10 9.76 4.99 5.16 6.96 14.41 7.28 5.88 7.47 6.76
DANI-Net w/o La 1.47 4.05 8.79 5.15 5.69 6.97 14.28 7.13 5.24 9.43 6.82
DANI-Net w/o L + Ly 1.44 4.28 8.19 4.98 5.92 6.88 15.29 6.08 5.28 8.06 6.64
DANI-Net 1.65 4.11 8.69 4.73 5.52 6.96 13.99 6.41 5.29 8.08 6.54




8.2. Silhouette Normal

Although the fitted silhouette normal is only reliable at the occluding boundaries, the silhouette loss Lg; is crucial in
alleviating GBR ambiguity that facilitates DANI-Net’s convergence and prevents it from falling into the local optimum.
We compare DANI-Net with ‘DANI-Net w/o Ls;” (or Ls;) that drops Lg; at the beginning (or at stage 3) on DILIGENT
dataset [12]. As shown in Table 8, the average MAE of normal estimation on 10 objects increases 0.52° (or 0.14°), indicating
the necessity of silhouette loss.

For objects in LIGHT STAGE DATA GALLERY [2] and DILIGENT 102 [1 1] with non-occluding silhouette, DANI-Net uses
silhouette loss in a more flexible way. That is, we either drop the silhouette loss at stage 3 (KNIGHT KNEELING, KNIGHT
FIGHTING, and KNIGHT STANDING from LIGHT STAGE DATA GALLERY [2]), or roughly estimate the silhouette’s normal
instead of pre-computing it through silhouette’s perpendicular vectors (BUNNY, HEXAGON, NUT, PENTAGON, PROPELLER,
SQUARE, and TURBINE from DILIGENT 10% [11])>. To clarify the necessity of this strategy, we visualize the estimated
normal map of DANI-Net and ‘DANI-Net w Lg;’ that keeps Ls; in all stages on KNIGHT FIGHTING with partially non-
occluding silhouettes on the sword (the top row of Fig. 13), and NUT PP with predominantly non-occluding silhouettes on
its base (the bottom row of Fig. 13). It can be observed that keeping Lg; in all stages does not significantly affect the normal
estimation results for objects with partially occluding silhouettes like KNIGHT FIGHTING, but it does harm the performance
for objects with predominantly non-occluding silhouettes (MAE on normal estimation increases 1.16° on NUT PP). This
validates the effectiveness of our flexible strategy using Lg; on objects with non-occluding silhouettes.

Table 8. Quantitative comparison in terms of MAE of surface normal on DILIGENT benchmark dataset [12] for different alternatives on
silhouette loss. Bold numbers indicates the best results.

Method BALL BEAR BUDDHA CAT Cow GOBLET HARVEST Porl PoT2 READING AVG

DANI-Net w/o Ls; 1.68 4.22 9.44 5.30 5.79 8.12 14.18 7.43 5.53 8.89 7.06

DANI-Net w/o L£si-3 | 181 4.07 8.72 515 569 7.10 13.77 695 526 8.30 6.68

DANI-Net 1.65 4.11 8.69 4.73 5.52 6.96 13.99 6.41 5.29 8.08 6.54
DANI-Net DANI-Net w £;
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Figure 13. Visualization of the estimated normal map on KNIGHT FIGHTING (top), and NUT PoM (bottom) from LIGHT STAGE DATA
GALLERY [2] and DILIGENT10? [11]. Sub-figures in the left (or right) column are normal maps estimated by DANI-Net (or ‘DANI-Net
w Lsi’) Red boxes highlight prominent regions for easy comparison. Red arrows point to the silhouette of objects. Numbers at the bottom
indicate the MAE of normal estimation.

21t is easy to estimate the silhouette normal of those objects as [0,0,1]. We apply the same measurement in SCPS-NIR [7] to calculate the silhouette
normal loss for a fair comparison.



9. Additional Results on DILIGENT10? Dataset [11]

Quantitative results of normal estimation. Fig. 14 presents the comprehensive normal estimation results compared
with CW20 [4], SCPS-NIR [7], and CNN-PS [5]. While DANI-Net outperforms current methods on BALL and BUNNY or
anisotropic group (i.e., AL, CU, and STEEL), the average MAE of DANI-Net on 100 objects’ normal estimation is slightly
higher than CNN-PS (still lower than current UPS methods). Particularly, we find that DANI-Net is not competitive on
objects of NYLON and ACRYLIC, and objects like TURBINE and PROPELLER with complicated shapes in the ‘anisotropic

group’.
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Figure 14. Normal estimation results on DILIGENT10? Dataset [11] visualized by Shape-material error
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bracket indicate each method’s mean/median MAE for normal estimation.

Quantitative results of light calibration. Fig. 15 and Fig. 16 present the light calibration results, compared with
CW20 [4], SCPS [3], and SCPS-NIR [7]. As can be observed in those figures, DANI-Net reaches the second-best per-
formance on light direction calibration and the best on light intensity calibration. By cross-comparing the results of normal
estimation, we find that the cases with high normal estimation MAE also result in particularly high MAE in light calibration.
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Figure 15. Light direction calibration results on DILIGENT10? Dataset [1 1] visualized by Shape-material error matrix [ 1]. Numbers in
the bracket indicate each method’s mean/median MAE for light direction calibration.
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Analysis on light initialization. We first conjecture that inadequate light initialization is the main cause of inaccurate
normal estimation. To validate that, we showcase the initial light’s (calibrated by the pre-trained light model [7]) MAE in

Fig. 17.
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Figure 17. Comparison between DANI-Net and the pre-trained light model of SCPS-NIR [7] on light calibration. Numbers in the bracket
indicate each method’s mean/median MAE for light direction calibration.

The results validate our conjecture, i.e., the initial lights deviate significantly from the ground truth in the aforementioned
cases. Therefore, initializing the light more accurately will be a reasonable strategy (e.g., light calibrated by GCNet [4]).
We compare DANI-Net with ‘DANI-Net+GCNet’, with the latter differing only in its light initialized by GCNet. As shown
in Fig. 18, the average MAE of normal estimation (or light calibration) of ‘DANI-Net+GCNet’ decreases 0.77° (or 3.06°).
Particularly, we observe a compelling enhancement for objects with complicated shapes (i.e., PROPELLER, TURBINE), but
a marginal improvement for objects made of NYLON and ACRYLIC. While objects made of ACRYLIC still have inaccurate
light initialization leading to unsatisfactory light calibration and normal estimation®, the results obtained for objects made of
NYLON contradict our earlier conjecture. We further assume that the materials’ exceptional properties may be the primary
cause of the subpar performance.
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Figure 18. Comparison between DANI-Net and DANI-Net+GCNet on normal estimation and light calibration. All of the results are
visualized by the Shape-material error matrix [11]. Numbers in the top and bottom left brackets indicate each method’s mean/median
MAE for light direction calibration. Numbers in the bottom right bracket indicate each method’s mean/median scale invariant relative error
for light intensity calibration.

3This may mainly be caused by the sub-surface scattering of translucent materials.



Analysis on material properties. We check the observed images of NYLON BALL (shown in the right of Fig. 19) and
find that some images are contaminated by unexpected artifacts (see the red square in the right sub-figure) regarded as the
noise that harms DANI-Net’s performance. A naive trick for noise removal is to exclude the pixel points with too high or too
low intensity for a smooth intensity profile. However, since the specularity contains solid reflectance cues to solve UPS, we
only remove the low-intensity pixel points (i.e., the point with an intensity that is lower than the 25th percentile of overall
pixels’ intensities). We denote DANI-Net implementing this trick as ‘DANI-Net w rm’. According to Table 9, we find this
simple trick further improves DANI-Net’s performance on NYLON and even remains effective on ACRYLIC objects because
the sub-surface scattering of translucent materials can also be regarded as noise, shown in the left of Fig. 19. The MAE of the
surface normal for NYLON (or ACRYLIC) objects decreases 5.18° (or 2.24°). However, note that this trick cannot explicitly
exclude the noise, we regard a robust method of modeling these materials as part of our future work.

Figure 19. The observed image of ACRYLIC BALL (left) and NYLON BALL (right) from DILIGENT10? Dataset [11]. The red squares
indicate the regions that may harm the performance of DANI-Net.

Table 9. Quantitative comparison in terms of MAE of surface normal on DILIGENT10? benchmark dataset [ 12]. Bold numbers indicates
the best results.

Material Method BALL GOLF SPIKE NUT SQUARE PENTAGON HEXAGON PROPELLER TURBINE BUNNY | AVG
NYLON DANI-Net 7.06 20.98 22.63 22.79 25.33 28.3 26.96 24.00 34.37 23.82 23.62
DANI-Net w rm 5.23 13.40 9.61 16.22 20.43 24.10 19.18 22.62 34.43 19.17 18.44
ACRYLIC DANI-Net 34.14 39.13 36.63 35.25 42.70 36.90 44.67 23.50 33.03 21.89 34.78
DANI-Net w rm 35.27 25.50 35.10 33.38 36.98 36.16 45.61 25.23 32.90 19.27 32.54




Validation of anisotropic material modeling. To validate the effectiveness of our anisotropic material modeling method,
we visualize the rendered image, and 4 dominant ASG bases of 2 shapes (i.e., BALL and BUNNY) made up of 3 anisotropic
materials (i.e., STEEL, CU, and AL respectively), compared with SCPS-NIR [7]’s rendered image and 4 dominant SG bases
in Fig. 20. According to the result, our rendered images are more realistic than [7].
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Figure 20. Visualization of the observed images (column 1), rendered images (column 2, 5), ASG bases (column 3, 4) and SG bases
(column 6, 7) on BALL and BUNNY made up of STEEL, CU, and AL. The rendered images with anisotropic material modeling are
generated by DANI-Net (column 2-4). The rendered images with isotropic material modeling are generated by SCPS-NIR [7] (column
5-7).



10. Results on APPLE & GOURD Dataset [1] and LIGHT STAGE DATA GALLERY dataset [2]

Preprocessing. For APPLE & GOURD, we scale the images into 0.5 of their original size for efficient training. For LIGHT
STAGE DATA GALLERY, we use a preprocessing method that is different from [4,7]. We follow [2] to implement gamma
correction with an exponent as 2.2 on objects with LDR observed images (i.e. objects expect HELMET FRONT) and magnify
the pixel intensity 5 times on objects except PLANT because the original pixel intensities on those objects are too low, leading
to strong artifacts on the predicted normal map. We also downsample the PLANT’s observed images to 0.5 of their original
size for efficient training. The above preprocessing process is also applied in [7] for a fair comparison.

Qualitative and Quantitative Results. Table 10 shows the light calibration results of 3 objects from APPLE & GOURD
Dataset [ 1] and 6 objects from LIGHT STAGE DATA GALLERY dataset [2]. As these two datasets don’t release the ground
truth normal map, we only provide the predicted normal map in Fig. 21 and Fig. 22 for qualitative analysis. The results
show that DANI-Net can not only estimate the surface normal reasonably but also calibrate the light accurately (we have
the state-of-the-art light calibration results), illustrating that DANI-Net is free from the deviation of different experimental
setups.

Table 10. Quantitative comparison in terms of MAE of light direction and scale-invariant error of intensity on DILIGENT benchmark

dataset [12]. Bold numbers and underlined numbers indicate the best and the second-best results, respectively.
HELMET HELMET KNIGHT KNIGHT KNIGHT

APPLE GOURDI1 GOURD2 PLANT AVG
Model LEFT FRONT KNEELING STANDING FIGHTING
dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.
PF14 [10] 6.68 0.109 21.23 0.096 25.87 0.329 20.56 0.227 25.40 0.576 81.60  0.133 46.69 9.805 33.81 1.311 69.50 1.137 36.82 1.52
CW20 [4] 10.91 0.094 4.29 0.042 7.13 0.199 10.49 0.154 533 0.096 6.22 0.183 14.41 0.181 531 0.198 13.42 0.168 8.61 0.146
SCPS-NIR [7] 1.87 0.016 2.34 0.027 2.01 0.233 10.52 0.150 3.96 0.123 3.31 0.138 6.72 0.211 9.09 0.185  11.82 0.299 5.74 0.154
DANI-Net 2.40 0.014 1.50 0.027 0.97 0.227 5.76 0.096 3.90 0.122 4.69 0.094 6.43 0.196 8.88 0.159 6.12 0.147 4.74 0.129
Observed Normal GT Light DANI-Net SCPS-NIR CcW20
Image Map

dir. err. /int. err. 2.40/0.014 1.87/0.016 10.91/0.094 1

APPLE
GOURD1 dir. err. /int. err. 1.50/0.027 2.34/0.027 4.29/0.042

0.97/0.227 2.01/0.233 7.13/0.199

PLANT dir. err. /int. err. 5.76 / 0.096 10.52/0.150 10.49/0.154

Figure 21. The visual quality comparison among DANI-Net, SCPS-NIR [7], and CW20 [4] on APPLE, GOURDI1, and GOURD2 from
APPLE & GOURD [1] and PLANT from LIGHT STAGE DATA GALLERY [2] in terms of normal map (column 2) and light map (column 3 -
6). Numbers indicate the MAE (for light directions).
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Figure 22. The visual quality comparison among DANI-Net, SCPS-NIR [7], and CW20 [4] on HELMET LEFT, HELMET FRONT, KNIGHT
KNEELING, KNIGHT STANDING and KNIGHT FIGHTING from LIGHT STAGE DATA GALLERY [2] in terms of normal map (column 2)
and light map (column 3 - 6). Numbers indicate the MAE (for light directions).
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