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A. Additional Method Details
A.1. The Pseudo Code of DISC

The pseudo-code of DISC is shown in Algorithm 1. DISC optimizes a two-view (via weak and strong augmentation) based
network, in which the prediction confidences from both views are used for calculating all losses. when calculating all the
losses. DISC first warms up for T0 epochs, then performs selection and correction in the rest epochs. To reduce confirmation
bias, DISC utilizes the confidences from the previous epoch, which can also be regarded as a temporal ensembling of different
iterations’ results from the previous epoch.

A.2. The Setting of the Coefficient in Eq. (6), (7) and (12)

The custom method for calculating the losses is to average the values by the actual batch size. While in Eq. (6), (7), and
(12), we choose to average the losses using the original batch size 1

N to resize the learning rate. Let θ denote the parameters
of the model, then the updated parameters can be denoted by:

∆θ = − ε

N

N∑
i=1

∇θL(fθ(yi;xi), yi), (1)

where ε denotes the learning rate, and fθ(xi; yi) denotes the model confidence for given label yi. If the selected number is
(Ns < N ), the updated parameters will be denoted by:

∆θ = − kε

Ns

Ns∑
i=1

∇θL(fθ(yi;xi), yi), (2)

where k is the ratio to resize the learning rate. During the warm-up phase in which all the instances are utilized to calculate
the loss. Thus, the learning rate should be proportional to the number of instances used to update the model parameters, i.e.:

kε

ε
=

Ns

N
. (3)

Thus we have k = Ns

N . Replacing k in Eq. (2), and we can get Eq. (4). Eq. (4) actually reflects that the learning rate is
proportional to the number used to update the model parameter, and with the number of selection or correction increasing,
the learning rate increases too. Thus, we use 1

N to average the losses which can also be regarded as a weight for learning rate
in Eq. (6), (7), (12).

∆θ = − 1

N

Ns∑
i=1

∇θL(fθ(yi;xi), yi), (4)
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Algorithm 1: DISC algorithm.
Input: Noisy set N = {(xi, yi),∀xi ∈ X ,∀yi ∈ Y, i = 1, ..., N}, start epoch T0, total epochs Tmax, model fθ, λ, σ.

1 for t = 1, ..., Tmax do
2 for b = 1, ..., B do
3 obtain batch images xb and batch noisy labels yb from data loader
4 xw

b , xs
b = weakaug(xb), strongaug(xb)

5 pw(c;xb), ps(c;xb) = fθ(x
w
b ), fθ(x

s
b),∀c ∈ Y

6 if t ≤ T0 then
// warm-up for T0 epochs

7 L = LC(pw(c;xb), ps(c;xb), yb) // see formula (4)
8 else
9 obtain {xc

b, y
c
b}, {xh

b , y
h
b }, {xm

b , ŷm
b } using C, H, M // obtain the subset of data batch

10 L = LC(pw(c;x
c
b), ps(c;x

c
b), y

c
b) + λhLH(pw(c;x

h
b ), ps(c;x

h
b ), y

h
b ) + LM(pw(c;x

m
b ), ps(c;x

m
b ), ŷm

b )
// see formula (5), (7), (10)

11 end
12 θ(b+1) = SGD(L, θb) // update model parameters using optimizer
13 end
14 τw(t) = λτw(t) + (1− λ)max(pw(t), dim = 1)
15 τs(t) = λτs(t) + (1− λ)max(ps(t), dim = 1)
16 τws(t) = 0.5τw(t) + 0.5τs(t)
17 τ ′(t) = max(τws(t) + σ, 0.99)

/* Note that we use τ(t) or τ ′(t) to obtain subsets at the end of each epoch,
which means we do not select or correct instances in every iteration.
Instead, we use the confidences of the previous epoch to get the
subsets, which could be seen as a temporal ensemble of different
iterations’ results in the previous epoch. */

18 C = {xi, yi|pw(yi;xi) > τw(t)} ∩ {xi, yi|ps(yi;xi) > τs(t)}
19 H = {xi, yi|pw(yi;xi) > τw(t)} ∪ {xi, yi|ps(yi;xi) > τs(t)} − C
20 pws(c;xi) = 0.5pw(c;xi) + 0.5ps(c;xi),∀c ∈ Y,∀xi ∈ X
21 P = {xi, ŷc = argmax

c
pws(c;xi)|max

c
pws(c;xi) > τ ′(t),∀c ∈ Y} − {C ∪ H}

22 M = {P ∪ C ∪ H}
23 end

A.3. IDN Generation Algorithm

The pseudo-code of instance-depend noise (IDN) generation process is provided in Algorithm 2, which follows the method
in [12].

B. Additional Experiment Details and Results
B.1. Additional Training Details

We provide the hyper-parameters for DISC in Table 1. From Table 1 we can see that our method only has four main hyper-
parameters (T0, λ, λh, σ) apart from the hyper-parameters about the optimizer. Furthermore, most of these hyper-parameters
don’t have to be modified in most cases, which verifies the robustness of our method DISC to hyper-parameters.

For the situation that noise ratio is extremely large (e.g., inst. 0.6), we use a relative small λ and λh and a relative large
σ. Since λ controls the delaying degree and threshold stability, it’s suitable to use a smaller λ for the situation when label
noises are heavy (a smaller λ refer to a larger threshold). Similarly, if label noises are heavy, we should use a larger threshold
to correct the noisy labels to reduce the contamination of noisy labels, and thus we use a larger σ in this situation. Moreover,
since the label noises in hard set will also increase as the degree of label noises increases, we decrease the weight of LH by
reducing λh.



Algorithm 2: IDN generation algorithm.

Input: Noisy set N = {(xi, yi),∀xi ∈ RS×1, noise ratio ρ.
1 Sample instance noise rate qi from the truncated normal distribution N (ρ, 0.12, [0, 1])

2 Sample W ∈ RK×S×K from the standard normal distribution N (0, 12) // K and S indicate the
number of classes and the dimension of instance features

3 for i = 1, 2, ..., N do
4 p = xT

i ×Wyi
// generate instance-dependent flip rates

5 pyi
= −∞ // control the diagonal entry of the instance-dependent transition
matrix

6 p = qi × softmax(p) // make the sum of the off-diagonal entries of the yi-th row
to be qi

7 pyi = 1− qi
8 Randomly choose a label from the label space according to the possibilities p as noisy label ỹi
9 end

Output: Noisy instances {(xi, ỹi)}ni=1.

Table 1. The hyper-parameters for DISC on different benchmarks. Tmax and T0 represent the total epochs and warm-up epochs, respec-
tively. λ is the layback ratio that controls the delaying degree and threshold stability. λh and σ indicate the weight of LH and the offset of
τ ′(t), respectively. lr, bs and wd are the abbreviations of the learning rate, batch size, and weight decay, respectively.

Dataset Backbone Tmax T0 λ λh σ lr bs wd learning rate schedule

CIFAR-10 (Inst. 0.2) ResNet-34 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
CIFAR-10 (Inst. 0.4) ResNet-34 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
CIFAR-10 (Inst. 0.6) ResNet-34 (scratch) 200 15 0.95 0.2 0.5 0.1 128 1e-3 divide 10 at epoch 80, 160

CIFAR-100 (Inst. 0.2) ResNet-34 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
CIFAR-100 (Inst. 0.4) ResNet-34 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
CIFAR-100 (Inst. 0.6) ResNet-34 (scratch) 200 15 0.95 0.2 0.5 0.1 128 1e-3 divide 10 at epoch 80, 160

Tiny-ImageNet (sym. 0) PresNet-18 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
Tiny-ImageNet (sym. 0.2) PresNet-18 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
Tiny-ImageNet (sym. 0.5) PresNet-18 (scratch) 200 15 0.99 1 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160
Tiny-ImageNet (asym. 0.45) PresNet-18 (scratch) 200 15 0.95 0.2 0.3 0.1 128 1e-3 divide 10 at epoch 80, 160

Animal-10N Vgg-19 (scratch) 120 10 0.99 1 0.3 0.05 64 5e-4 divide 10 at epoch 50, 80
Food-101 ResNet-50 (ImageNet) 100 10 0.99 1 0.3 0.01 32 5e-4 divide 10 at epoch 50, 80
WebVision InceptionResNetV2 (scratch) 100 15 0.99 1 0.3 0.2 32 5e-4 divide 10 at epoch 50, 80
Clothing1M ResNet-50 (ImageNet) 100 30 0.95 1 0.3 0.01 32 5e-4 divide 10 at epoch 50, 80

B.2. Additional Results on CIFAR-10/100

Besides the results of symmetric (sym.) and asymmetric (asym.) noise on the Mini-ImageNet database, we also provide
the results of DISC on CIFAR-10/100 under sym. and asym. noise situations. There are two types of sym. noises according
to whether the flipped labels contain the correct labels or not. We provide the results for both cases, i.e., with Table 2 showing
the results of flipped labels without correct labels, and Table 3 showing the results of flipped labels containing correct labels.
Three different noise rates are adopted in both two sym. noise types, i.e., ρ ∈ {20%, 50%, 80%}. We provide the results on
CIFAR-10/100 with 40% asym. noises following methods [3, 4, 11, 18] in Table 3.

For a fair comparison, we reproduced the results of all the baseline methods using their open-sourced codes and with the
same backbone (PresNet-18) and training epochs (200). For all the methods, we use an SGD optimizer with a momentum of
0.9, a weight decay of 0.001, and a batch size of 128 for training. The initial learning rate is set as 0.1, decaying by a factor
of 0.1 in epochs 80 and 160.

Results in Tables 2 and 3 show that our method DISC outperforms the state-of-the-art (SOTA) methods in most noise
cases, such as DivideMix [4], ELR+ [7], Co-learning [9], RRL [5] and GJS [2]. In particular, while RRL performs well under
the low rate of sym. noise situation, its robustness under high rate of sym. noise is not good. Compared with DivideMix
and ELR+ which use two networks to perform LNL, our DISC uses a single network, but still performs better. Overall, our
DISC shows strong capability and robustness in learning from data with a high percentage of sym. and asym. noise. DISC
can handle the label noises with a large ratio, which shows stronger robustness and generalization ability.



Table 2. Test accuracies (%) and standard deviations over the last 10 epochs of different methods on CIFAR-10 and CIFAR-100 with
different percentages of sym. and asym. noise, in which correct labels are used for noise generation. The results of all the baseline methods
are reproduced using the open-sourced code with 200-epoch training. For a fair comparison, all the models are trained with PresNet-18 as
a backbone and run three times with random seeds.

Dataset CIFAR-10 CIFAR-100
Noise type Sym 20% Sym 50% Sym 80% Asym 40% Sym 20% Sym 50% Sym 80% Asym 40%

CE 83.31 ± 0.09 56.41 ± 0.32 18.52 ± 0.16 77.06 ± 0.26 55.17 ± 0.12 32.40 ± 0.16 7.70 ± 0.06 40.63 ± 0.26
Mixup [17] 90.17 ± 0.12 70.94 ± 0.26 47.15 ± 0.37 82.68 ± 0.38 63.65 ± 0.29 40.94 ± 0.39 14.11 ± 0.31 46.83 ± 0.24
Decoupling [8] 85.40 ± 0.12 68.57 ± 0.34 41.08 ± 0.24 78.67 ± 0.81 52.75 ± 0.11 27.59 ± 0.16 7.38 ± 0.09 39.12 ± 0.08
Co-teaching [3] 87.95 ± 0.07 48.60 ± 0.19 17.48 ± 0.11 71.14 ± 0.32 56.03 ± 0.14 25.33 ± 0.08 5.18 ± 0.05 38.80 ± 0.08
JointOptim [10] 91.34 ± 0.40 89.28 ± 0.74 59.67 ± 0.27 90.63 ± 0.39 58.50 ± 0.47 53.58 ± 0.63 24.62 ± 0.50 61.17 ± 0.39
Co-teaching+ [15] 87.20 ± 0.08 54.24 ± 0.23 22.26 ± 0.55 79.91 ± 0.46 51.24 ± 0.23 25.07 ± 0.18 9.50 ± 0.08 35.66 ± 0.10
GCE [18] 90.05 ± 0.10 79.40 ± 0.20 20.67 ± 0.11 74.73 ± 0.39 59.92 ± 0.15 50.02 ± 0.12 18.53 ± 0.09 39.38 ± 0.17
PENCIL [14] 88.02 ± 0.90 70.44 ± 1.09 23.20 ± 0.81 76.91 ± 0.26 55.17 ± 0.12 32.40 ± 0.16 7.70 ± 0.06 40.63 ± 0.26
JoCoR [11] 89.46 ± 0.04 54.33 ± 0.12 18.31 ± 0.11 70.98 ± 0.21 54.70 ± 0.08 26.45 ± 0.13 5.50 ± 0.05 37.93 ± 0.09
DivideMix [4] 95.58 ± 0.06 94.73 ± 0.04 81.35 ± 0.36 91.69 ± 0.13 76.16 ± 0.11 72.84 ± 0.12 51.25 ± 0.07 55.56 ± 0.53
ELR [7] 90.35 ± 0.04 87.40 ± 3.86 55.69 ± 1.00 89.77 ± 0.12 72.88 ± 0.08 67.06 ± 0.09 28.40 ± 0.06 69.56 ± 0.07
ELR+ [7] 95.27 ± 0.11 94.41 ± 0.11 81.86 ± 0.23 91.38 ± 0.50 76.94 ± 0.18 73.01 ± 0.17 58.01 ± 0.17 74.39 ± 0.17
Co-learning [9] 92.14 ± 0.09 77.99 ± 0.65 43.80 ± 0.76 82.70 ± 0.40 69.93 ± 0.14 59.56 ± 0.18 41.77 ± 0.32 51.50 ± 0.24
RRL [5] 95.63 ± 0.06 93.96 ± 0.05 51.26 ± 0.20 92.44 ± 0.06 79.22 ± 0.12 74.81 ± 0.15 N/A 52.58 ± 0.22
GJS [2] 94.90 ± 0.13 89.22 ± 0.33 18.78 ± 0.18 85.95 ± 1.47 78.26 ± 0.17 21.58 ± 0.06 17.54 ± 0.22 58.73 ± 0.49
DISC (ours) 96.10± 0.05 95.14 ± 0.07 84.69 ± 0.17 94.64 ± 0.04 78.75 ± 0.13 75.21 ± 0.15 57.61 ± 0.29 76.50 ± 0.15

Table 3. Test accuracies (%) and standard deviations over the last 10 epochs of different methods on benchmark CIFAR-10 and CIFAR-
100 under symmetric noise (containing clean labels) and percents. The results of all the baseline methods are reproduced using the
open-sourced code with 200-epoch training. For fair comparison, all the models are trained with PresNet-18 as a backbone and run three
times with random seeds.

Dataset CIFAR-10 CIFAR-100
Noise type Sym 20% Sym 50% Sym 80% Sym 20% Sym 50% Sym 80%

Cross-Entropy 84.61 ± 0.10 62.35 ± 0.30 27.28 ± 0.30 56.10 ± 0.12 33.60 ± 0.20 8.18 ± 0.09
Mixup [17] 90.65 ± 0.15 74.60 ± 0.52 50.93 ± 0.79 64.06 ± 0.31 42.86 ± 0.50 14.79 ± 0.38
Decoupling [8] 86.36 ± 0.12 72.92 ± 0.23 48.44 ± 0.55 53.28 ± 0.11 28.00 ± 0.10 7.89 ± 0.06
Co-teaching [3] 89.57 ± 0.07 62.53 ± 0.19 28.51 ± 0.06 62.31 ± 0.13 34.90 ± 0.09 7.11 ± 0.05
Co-teaching+ [15] 88.05 ± 0.04 61.81 ± 0.19 22.26 ± 0.55 54.53 ± 0.11 27.59 ± 0.10 8.37 ± 0.06
GCE [18] 90.92 ± 0.06 83.00 ± 0.12 33.06 ± 0.24 61.23 ± 0.15 48.33 ± 0.13 18.51 ± 0.14
JointOptim [10] 91.20 ± 0.54 89.57 ± 0.55 81.79 ± 0.34 81.79 ± 0.34 58.60 ± 0.84 53.72 ± 0.83
PENCIL [14] 88.24 ± 0.61 73.41 ± 1.52 36.00 ± 0.69 57.35 ± 0.99 11.42 ± 3.22 5.36 ± 1.17
JoCoR [11] 90.99 ± 0.05 76.11 ± 0.05 27.36 ± 0.09 64.24 ± 0.10 36.78 ± 0.08 7.65 ± 0.04
DivideMix [4] 95.77 ± 0.08 94.57 ± 0.10 92.65 ± 0.07 76.51 ± 0.13 73.33 ± 0.13 52.39 ± 0.17
ELR [7] 89.76 ± 3.32 88.54 ± 2.74 77.91 ± 4.08 73.48 ± 0.08 67.26 ± 0.08 29.41 ± 0.09
ELR+ [7] 95.22 ± 0.11 94.56 ± 0.16 91.76 ± 0.12 76.94 ± 0.18 73.01 ± 0.18 58.28 ± 0.18
Co-learning [9] 92.84 ± 0.09 82.40 ± 0.28 52.71 ± 0.72 69.82 ± 0.26 60.44 ± 0.21 40.41 ± 0.47
RRL [5] 96.32 ± 0.06 94.65 ± 0.08 82.03 ± 0.20 78.93 ± 0.14 74.96 ± 0.14 N/A
GJS [2] 95.16 ± 0.12 91.65 ± 0.30 71.46 ± 1.38 78.42 ± 0.17 21.98 ± 0.61 22.35 ± 0.21
DISC (ours) 96.25± 0.04 95.40 ± 0.05 92.91 ± 0.11 78.63 ± 0.09 76.28 ± 0.14 59.34 ± 0.16

B.3. Confusing Labels Observed on Clothing1M’s Test Set

Clothing1M [13] is a well-known dataset for LNL due to its large size. However, similar to the label errors observed in
the ImageNet [1,16], we notice there are a large number of label errors of Clothing1M. Such kind of label errors may lead to
biased testing accuracy of individual methods. Here, we show such kind of bias on Clothing1M using our DISC, and a SOTA
method CC [19], which achieve 73.77% and 75.81% (using the original random seed) test accuracy, respectively on the test
set of Clothing1M.

We analyze the failed cases of two methods using a confusion matrix (see Fig. 1 (a) and (b)), and visualize some of the
failed cases in Fig. 2, in which the ‘ground truth’ labels (or test set labels) are shown above the images, and the predicted
labels are shown below. From Fig. 1 (a) and (b) we can see that the confusing classes by the two methods are very similar. In
general, we can summarize the failed cases by two methods into three cases, (i) the semantic overlapping labels, (ii) incorrect
labels, and (iii) images containing contents of multiple classes. For the semantic overlapping case we mean the classes may
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Figure 1. The statistics of the incorrect prediction by CC (a) and DISC (b), respectively.

Downcoat

Vest

Downcoat

Vest

Vest

Dress

Vest

Dress

Chiffon

Vest

Chiffon

Vest

Downcoat

Windbreaker

Downcoat

Windbreaker

Underwear

T-shirt

Underwear

T-shirt

Knitwear

Sweater

Knitwear

Sweater

(a)
Jacket Downcoat

Dress Hoodie

Hoodie

Jacket

Shawl

Shirt

Suit

Vest

Sweater

Shirt

(b)
Vest Vest

Dress Dress

Dress

Shawl

Dress

Shawl

Dress

T-shirt

Sweater

Vest

Vest Vest

Dress Dress

Dress

Shawl

Dress

Shawl

Dress

T-shirt

Sweater

Vest

(c)

Figure 2. The noisy labels in test set on Clothing1M. The ground-truth labels (red) are above the images, and the prediction labels (black)
are shown below. (a) Semantic overlapping labels. (b) Incorrect labels. (c) Multi-labels.

be all correct when referring to certain clothes since these classes are semantically closed (see Fig. 2 (a)), for instance, the
‘knitwear’ and ‘sweater’, ‘vest’ and ‘dress’, ‘downcoat’ and ‘vest’, ‘chiffon’ and ‘vest’, etc. For incorrect label cases, we
mean the given labels in the test set are completely incorrect. For example, the ‘dress’ is mislabeled as a ‘jacket’, the ‘hoodie’
is mislabeled as a ‘downcoat’, etc. For the multi-label case, an image may contain multiple instances of different classes (see
Fig. 2 (c)). For example, the first image in Fig. 2 (c) contains both ‘vest’ and ‘dress’, but only a single label ‘dress’ is given
in the dataset.

We also provide quantitative analysis about the results by CC and DISC. We use a confusion matrix manner to indicate
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Figure 3. (a) statistics of the incorrect prediction by DISC and correct prediction by CC, and (b) vice versa.

the situation that the one method’s predictions are correct while the other’s predictions are wrong (see Fig. 3 (a) and (b)).
From Fig. 3 (a) and (b), we can see that the easily confusing classes are different between the two methods. For instance,
more than a quarter of ‘downcoat’ images are classified as ‘vest’ by DISC. However, as we check these cases, these images
are almost ‘vest downcoat’, which means it’s acceptable to classify them as either ‘downcoat’ or ‘vest’ (see the second image
in Fig. 2 (a)). Similarly, around 14.2 % of ‘chiffon’ images are classified as ‘shirt’ by our DISC. After manually checking
these cases, a number of ‘chiffon shirt’ images commonly appear together with women’s wear. Based on our estimation,
around 60% images for which CC is correct while DISC is wrong to have confusing labels. And there are about 50% images
containing confusing labels for the opposite cases. Based on the above analyses, we argue that confusing labels in the test set
of Clothing1M may lead to biased results, while it can serve as a reference for comparing different LNL methods.

B.4. The Visualization of Features

We provide the visualization result of high-dimension features extracted by DNN using t-SNE [6] under 40% asym. label
noise on the CIFAR-10 benchmark, which is shown in Fig. 4. We can see that as training goes on, the noisy feature cluster
gets denser and different class clusters are more dispersed. We attribute this phenomenon to the memorization strength, which
increases along with the training.

C. Negative Social Impacts
Since all the benchmarks we used are public without face images inside, there are not known IRB problems.



40 20 0 20 40

40

20

0

20

40

epoch0

clean
noisy

60 40 20 0 20 40 60
60

40

20

0

20

40

epoch40
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch80
clean
noisy

40 20 0 20 40
60

40

20

0

20

40

60
epoch120

clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch160
clean
noisy

60 40 20 0 20 40 60

40

20

0

20

40

epoch10
clean
noisy

60 40 20 0 20 40

40

20

0

20

40

epoch50
clean
noisy

40 20 0 20 40
60

40

20

0

20

40

epoch90
clean
noisy

40 20 0 20 40
60

40

20

0

20

40

epoch130
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch170
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch20
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch60
clean
noisy

60 40 20 0 20 40

40

20

0

20

40

epoch100
clean
noisy

60 40 20 0 20 40 60
60

40

20

0

20

40

epoch140
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch180
clean
noisy

60 40 20 0 20 40 60
60

40

20

0

20

40

epoch30
clean
noisy

60 40 20 0 20 40 60

40

20

0

20

40

epoch70
clean
noisy

40 20 0 20 40

40

20

0

20

40

60
epoch110

clean
noisy

40 20 0 20 40
60

40

20

0

20

40

epoch150
clean
noisy

40 20 0 20 40 60

40

20

0

20

40

epoch190
clean
noisy

Figure 4. The visualization of the features using t-SNE under 40% asym. label noise on CIFAR-10 benchmark ranging from epoch 0 to
epoch 190.
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