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We arrange the supplemental material in the following
sections. In Sec. 1, we provide the details of our method
for training, including the details of training data and data
augmentation. In Sec. 2, we present the details of the pro-
posed AFLW2000-3D-occlusion dataset. In Sec. 3, we pro-
vide more quantitative results on AFLW2000-3D with re-
annotated labels provided by LS3D-W [1]. In Sec. 4, we
compare our method with more existing methods qualita-
tively.

1. Training Data

We train our model on the 300W-LP dataset [15], where
each 2D image has its corresponding ground truth 3D label.
The 3D label is the 3DMM coefficients obtained by fitting
3DMM to 68 manually labeled 2D facial landmarks through
the Multi-Features Framework [7]. Because the 3D label is
recovered from sparse landmarks, it is not always precise,
especially in local facial regions. Additionally, to collect
sufficient profile view face images, [15] generates synthetic
profile images by 3D rotation around yaw angles, which
leads to artifacts in the side face regions, shown in Fig. 1.
Since our image space branch relies more on low-level im-
age features, the above two attributes of 300W-LP make this
dataset cannot fully reflect the superiority of our method.
Therefore, our method has the potential to achieve better
performance if more precisely labeled real-world datasets
are available in the future.

For data augmentation, we follow previous works [5, 8].
We augment the images by random rotation, translation,
scaling, and color channel scaling. Specifically, the rotation
ranges from -90 to 90 degree angles, the translation ranges
from 10 percent of input size, the scale is from 0.95 to 1.05,
color channel scale is from 40 percent of the original color
value. We also introduce random synthetic occlusions and
some of them have texture from the Describable Textures
Dataset [2].

Figure 1. Typical samples from 300W-LP. The left is an image
before data augmentation. The right is a corresponding image after
data augmentation, which 3D rotates the initial image around the
yaw angle. Please note the artifacts in the side face region.

2. AFLW2000-3D-occlusion
We construct AFLW2000-3D-occlusion to evaluate a

method’s robustness to occlusion. It consists of three sub-
sets: Naturally Occluded Dataset (NOD), Color Syntheti-
cally Occluded Dataset (CSOD), and NatOcc Synthetically
Occluded Dataset (NSOD).

A. Naturally Occluded Dataset (NOD) This subset con-
tains 127 automatically selected images from AFLW2000-
3D. Illustrated in Fig. 2, for every image in AFLW2000-3D,
we compute a visible rate v to represent its visibility. We
first project the ground-truth face mesh to the image plane
and get the projected contour P . Then we use an off-the-
shelf face skin segmentation algorithm [14] to get the vis-
ible facial region F . The visible rate is computed as the
ratio of the area of the intersection of the projected contour
and the face skin segmentation to the area of the projected
contour:

v =
s(P ∩ F )

s(P )
, (1)

Profile images always have smaller v, because hairs al-
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Figure 2. Illustration of computing visible rate. (a) An initial im-
age. (b) P : The corresponding contour of the ground truth 3D
face mesh projected to the image plane. (c) F : Face skin region
obtained by [14]. (d) P ∩ F : The intersection of the projected
contour and the face skin region.

Figure 3. Images from AFLW2000-3D with different visible rates.
Images in the second row are selected to the Naturally Occluded
Dataset (NOD).

ways cover the ear region which accounts for a large pro-
portion of the projected contours especially viewed from the
side. To prevent entangling with the problem of large yaw
angles, we filter out samples with yaw angles larger than 60
degrees and only select samples with visible rates less than
0.6. Fig. 3 shows some samples with different visible rates.

B. Color Synthetically Occluded Dataset (CSOD) This
subset contains 6000 images augmented from AFLW2000-
3D. We follow the occlusion patterns in [11]. Every image
in AFLW2000-3D is occluded by three different types of
color synthetic occluder: 1. Single-square occlusion, which

Figure 4. Samples from Color Synthetically Occluded Dataset
(CSOD). Left: Single-square occlusion. Middle: Double-square
occlusion. Right: Column-shaped occlusion.

Figure 5. Samples from NatOcc Synthetically Occluded Dataset
(NSOD).

is a square-shaped occlusion. 2. Double-square occlusion,
which consists of two intersected square-shaped occlusions.
3. Column-shaped occlusion, which is a rectangular occlu-
sion whose height is equal to the side length of the input
image. Examples of this subset are shown in Fig. 4.

C. NatOcc Synthetically Occluded Dataset (NSOD)
This subset contains 2000 images augmented from
AFLW2000-3D. We use Naturalistic Occlusion Generation
(NatOcc) technique from [12] to add daily objects on top of
images from AFLW2000-3D. Examples of this subset are
shown in Fig. 5.

3. Evaluation on Re-annotated AFLW2000-3D
Since AFLW2000-3D is semi-automatically annotated,

there are some cases that have inaccurate annotations. As
shown in Fig. 6, some of our method’s predictions with
large NME errors actually are caused by inaccurate anno-
tations. LS3D-W [1] provides more accurate 2D annota-
tions of 68 facial landmarks. We evaluate our method on 2D
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Figure 6. Comparing results from our DSFNet and ground truth
on AFLW2000-3D dataset. From left to right are the input image,
facial landmarks comparison (blue for ground truth and red for our
method), our method’s prediction, and ground truth.

Method 2D Sparse Face Alignment
0 to 30 30 to 60 60 to 90 Mean

DHM [10] 2.28 3.10 6.95 4.11
3DDFA [15] 2.84 3.52 5.15 3.83
PRNet [5] 2.35 2.78 4.22 3.11

MGCNet [9] 2.72 3.12 3.76 3.20
Deep3D [3] 2.56 3.11 4.45 3.37

3DDFA-V2 [16] 2.84 3.03 4.13 3.33
SADRNet [8] 2.31 2.46 3.41 2.73

SynergyNet [13] 2.05 2.49 3.52 2.69
DSFNet-f (ours) 2.11 2.31 3.28 2.57

Table 1. Sparse face alignment (68 landmarks) on AFLW2000-3D
Reannotated. The NME (%) for faces with different yaw angles
are reported.

sparse alignment using these re-annotated labels. As shown
in Tab. 1, our method has a better performance compared to
existing methods.

4. Additional Qualitative Results
We compare our method qualitatively with PRN [5],

MGCNet [9], DECA [4], 3DDFA-V2 [6], SynergyNet [13]
and SADRNet [8] in Fig. 7 and Fig. 8. Images are from
AFLW2000-3D and [12].

The qualitative results demonstrate our method’s robust-
ness to severe occlusion and large view angles. Even if a
large proportion of the face is occluded, our method can
filter out non-facial regions to prevent interference from oc-
cluders and deduce the whole face geometry from the vis-
ible regions. Therefore, our method conducts reasonable
predictions in severe occluded cases where other methods’
predictions are distorted due to occlusion. Because our
method fully utilizes low-level image information which is
less variant to geometry transformation, our method shows
high robustness to large view angles. We notice MGCNet
and SynergyNet have certain robustness to large view an-
gles, and DECA and SADRNet are robust to some kinds of
occlusion. Our method is the only one that is robust to both
problems.
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Figure 7. Qualitative Comparison on AFLW2000-3D and [12].
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Figure 8. (Continued) Qualitative Comparison on AFLW2000-3D and [12].
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