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1. Implementation details
1.1. Inputs and Augmentation

For images, we use a combination of 256 × 256 re-
size, 224 × 224 centercrop, and a random horizontal flip
for augmentation and extract 16 × 16 patches per image.
For texts, we tokenize the raw texts with a WordPiece tok-
enizer. The maximum length of the text sequences is 512
for MM-IMDB and UPMC Food-101 datasets, and 70 for
the SNLI-VE dataset.

1.2. Network training

We have two different training settings for the main re-
sults in Table 2 and ablation studies in Section 4.5.

In the main results, we sweep the learning rate in
{0.1, 0.01} and early-stop on validation accuracy for
UPMC Food-101 and SNLI-VE datasets, and F1-Macro for
MM-IMDB. the learning rate decreases by 0.1 after three
non-improvement epochs and training ends after seven non-
improvement epochs. This ensures fairness as different
models require varying training epochs.

All experiments in the ablation studies are trained for 30
epochs with the same cosine-decayed learning rate starting
from 0.01. We use the same learning rate schedule and a
fixed number of training epochs as we only need to train
PMF in ablation study.

1.3. PMF with NAS

Search Space. The search space contains fusion layer Lf ∈
{L−6, L−4, L−2} and prompt length M ∈ {2, 4, 8, 16}.
Specifically, the length of any prompt vector used in PMF
is chosen from {2, 4, 8, 16}. Before each iteration in the
training stage, we first sample the fusion layer Lf from
{L − 6, L − 4, L − 2}, and then we randomly sample the
length for every prompt vector. The weight entanglement
strategy allows the weight-sharing of the same prompt vec-

tor between different samplings. For example, when M l
qcp

is sampled 4 and 16 in two consecutive iterations, the first
four prompts in zlqcp will be updated twice in both iterations
while the last twelve prompts in zlqcp will only be updated in
the second iteration. All sampling processes in the training
follow the uniform probability.
Evolution Search. In the searching stage, we first randomly
pick 30 candidate sets as seeds and find top-10 sets to gen-
erate the next generation of architectures through mutation
and crossover. For mutation, a candidate set first mutates
the fusion layer with a probability of 0.2 and then mutates
every prompt length to a random length in {2, 4, 8, 16} with
a probability of 0.2. For a crossover, we randomly select
two candidate sets and use the hyper-parameters in these
two sets to produce a new candidate set. We generate 30
new candidates per searching epoch for 5 epochs in total.

2. Visualization
To understand the effect of our proposed prompt-based

multimodal fusion method, we visualize the output feature
of the CLS tokens of different multimodal fusion layers
via t-SNE (i.e. zlCLS−img and zlCLS−txt, where l ≥ Lf ).
For a qualitative comparison, we also visualize the output
feature distribution without the information from the other
modality. The visualization results are shown in the figures
in this supplementary material. This controlled compari-
son clearly demonstrates the positive impact brought by the
cross-modal information fusion.

For UPMC-Food 101, we randomly sampled 8 out of 101
classes in the test set for visualization. The results shown
in Fig. 1 and Fig. 2 indicates that both vision and text en-
coders benefit from the cross-modal information, resulting
in a more desirable feature space where the samples of the
same class are closer to each other compared to samples of
different classes.

For visualization on SNLI-VE, we randomly sampled
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500 image-text pairs for each of the three classes in the
test set. Since each image premise has three paired text
hypotheses in SNLI-VE, it is meaningless to use extracted
visual feature alone in the classification. The visualizations
in Fig. 3c andFig. 3a shows that the visual features of three
classes are not dividable without cross-modal fusion. After
fusing the textual information into the vision encoder, the
feature space starts to disentangle as shown in Fig. 3b and
Fig. 3d. For language encoder fusing cross-modal informa-
tion from vision modality, there is no significant difference
shown in the visualization results in Fig. 4.



(a) Output visual feature of 11th TransLayer without cross-modal fusion. (b) Output visual feature of 11th TransLayer fused with textual information.

(c) Output visual feature of 12th TransLayer without cross-modal fusion. (d) Output visual feature of 12th TransLayer fused with textual information.

Figure 1. t-SNE visualization of visual features on UPMC-Food 101 test set

(a) Output textual feature of 12th TransLayer without cross-modal fusion. (b) Output textual feature of 12th TransLayer fused with visual information.

Figure 2. t-SNE visualization of textual features on UPMC-Food 101 test set



(a) Output visual feature of 11th TransLayer without cross-modal fusion. (b) Output visual feature of 11th TransLayer fused with textual information.

(c) Output visual feature of 12th TransLayer without cross-modal fusion. (d) Output visual feature of 12th TransLayer fused with textual information.

Figure 3. t-SNE visualization of visual features on SNLI-VE test set.

(a) Output textual feature of 12th TransLayer without cross-modal fusion. (b) Output textual feature of 12th TransLayer fused with visual information.

Figure 4. t-SNE visualization of textual features on SNLI-VE test set


