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The supplementary material includes details on the model
architecture, implementation, baselines, SLAM analysis, and
synthetic dataset. We also encourage readers to watch our
video demo for more qualitative results.

1. Model Architecture
HeadNet. Our HeadNet is a transformer-based model [12]
consisting of two self-attention blocks, each of which has a
multi-head attention layer followed by a position-wise feed-
forward layer. In our implementation, we set the number of
heads in each block nhead = 4. We illustrate the operation
of each self-attention block in Figure 1 where xt denotes
the input feature vector and x′

t denotes the updated feature
vector in time step t.

Specifically, given X ∈ RT×Dinput , we first embed
the input sequence into three matrices, namely keys K =
XWK , queries Q = XWQ, and values V = XWV , where
K, Q, V are matrices with dimension T ×DK , T ×DQ

and T ×DV . We split each matrix into multiple heads where
each head is T ×Di, with DK =

∑
i Di.

For each head, we compute the features using scaled-dot
attention as

Yi = Softmax
(
QiK

T
i√

Di

)
Vi. (1)

We concatenate Yi to form Y with size T ×DV and input
it to two position-wise 1D convolution layers followed by
layer normalization. We denote the dimension of the output
feature vector in each block as Doutput. Obtaining the fea-
tures T ×Doutput from transformer blocks, we append an
MLP to project features to predicted angular velocity and
distance scalar values. In our implementation, we set the
dimensions Dinput, Doutput, DK , DQ, DV to 256.

GravityNet. Our GravityNet shares the same model archi-
tecture as HeadNet.

Conditional Diffusion Model. Our conditional diffusion
model for full-body pose generation from the head pose de-

† indicates equal contribution.
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Figure 1. Illustration of the self-attention block used in our
transformer-based model architecture.

ploys a similar transformer-based architecture in each denois-
ing step. We use four self-attention blocks and the number
of heads in each block is nhead = 4. The window length T
is 120. And the dimensions Dinput, Doutput, DK , DQ, DV

are set to 512, 512, 256, 256, 256.

Sliding Window Strategy for Long Sequence Genera-
tion. To generate full-body poses given head poses for
a long sequence (more than 120 frames), we propose a
sliding-window strategy. Suppose we have full-body pose
predictions pk

0 ,p
k
1 , ...,p

k
T of kth window, and we set the

overlap steps to 10, when we estimate full-body poses for
the (k+1)th window, we use pk

T−9,p
k
T−8, ...,p

k
T to replace

pk+1
0 ,pk+1

1 , ...,pk+1
9 during the denoising step of each noise

level.

Implementation Details. Our implementation uses Py-
Torch [9]. During the training of HeadNet and GravityNet,
we start with a learning rate of 0.0001 and use the AdamW
optimizer [4] with batch size 8. The training takes about 20
hours for HeadNet and 15 hours for GravityNet to converge
using a single NVIDIA Titan RTX GPU. For our conditional
diffusion model, we start with a learning rate of 0.0001 and
use the Adam optimizer [3] with batch size 32. The training



takes about 24 hours to converge using a single NVIDIA
Titan RTX GPU.

2. Details of Baselines
AvatarPoser. We use the official code released by Jiang
et al. [1]. AvatarPose uses a transformer-based model archi-
tecture similar to our denoising network in the conditional
diffusion model. The number of self-attention blocks is
3, and the number of heads in each block is 8. We use
their default learning rate of 0.0001 and the Adam optimizer.
The training takes about one day to converge using a single
NVIDIA Titan RTX GPU.

Kinpoly-Head. We use the official code released by Luo
et al. [5]. We modify Kinpoly to a setting that takes the
head pose as the only input. Kinpoly-Head consists of a
ContextRNN and an ActionRNN, as shown in Figure 2. The
ContextRNN takes head velocity V ∈ RT×6 as the only
input, estimates the first body pose X1 by averaging features
from all the time steps denoted as F̄ and provides context
features F1,F2, ...,FT as input for ActionRNN. In each
step, they feed the context features Ft, pose state in previous
step Xt−1 and head pose Ht to ActionRNN, and predict the
body pose state Xt. We use their default learning rate of
0.0001 and the Adam optimizer. The training takes about
three days to converge using a single NVIDIA Titan RTX
GPU.

PoseReg. We use the official code released by Ye et al. [13].
PoseReg consists of a Bidirectional LSTM model with a
hidden dimension of 1024. We use their default learning
rate of 0.0001 and the Adam optimizer. The training takes
about one day to converge using a single NVIDIA Titan RTX
GPU.

Kinpoly-OF. We use the official code released by Luo
et al. [5]. We modify Kinpoly so that it takes optical flow
features as the only input. The model architecture is the
same as Kinpoly-Head. We use their default learning rate
of 0.0001 and the Adam optimizer. The training takes about
three days to converge using one NVIDIA Titan RTX GPU.

3. SLAM Analysis
Our hybrid approach for head pose estimation relies on

the head translation predicted by DROID-SLAM. If DROID-
SLAM fails to predict head pose for a given egocentric video,
our approach cannot produce accurate head pose prediction
results and decent full-body predictions. To eliminate the
effects of DROID-SLAM on our evaluations, we compute
the upper bound for all the head trajectories extracted using
DROID-SLAM and discard the sequences in which DROID-
SLAM failed (the upper bounds have large errors). We set
threshold Ohead = 0.9, Thead = 300, and remove the
sequences that have an upper-bound Ohead or Thead larger
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Figure 2. Model architecture of the baseline Kinpoly-Head.

# of sequences Ohead Thead

ARES 215 0.45 31.94
Kinpoly-MoCap 75 0.57 121.42
GIMO 34 0.72 62.08

Table 1. DROID-SLAM’s upper bound on three test sets.

than the threshold. The number of sequences in our original
testing datasets is 300, 165, and 83 for ARES, Kinpoly-
MoCap, and GIMO, respectively. We show the statistics of
the selected sequences in Table 1.

4. More Details of Synthetic Dataset (ARES)
Our synthetic dataset (ARES) combines the motion from

AMASS [6] and 3D scenes from Replica [10] and uses the
AI Habitat [7, 11] for fast and realistic rendering.

SDF Processing. Because the meshes in Replica are not
watertight, we first make the scene meshes watertight using
Poisson reconstruction [2]. Subsequently, we convert the
meshes to signed distance function (SDF) using a public
repository [8] to facilitate the calculation of penetration loss
with a human mesh.

Efficient Synthesis Strategy. For each motion sequence
from AMASS, we randomly place and orient the root trajec-
tory in the scene under the condition that the human mesh at
the beginning of the trajectory is in contact with the floor. As
described in the paper, we compute penetration loss for each
human mesh of the sequence with the 3D scene. If the num-
ber of penetration-free meshes is less than 60, we discard
the current sequence and try another random rotation and
placement. We employ an efficient data generation strategy
that we only experiment 10 times for each motion sequence.
We showcase more examples from our synthetic dataset in
Figure 3 and Figure 4.



Figure 3. More examples from ARES. Each row represents down-sampled frames from a different sequence.



Figure 4. More examples from ARES. Each row represents down-sampled frames from a different sequence.
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