
In this supplementary material, we present an additional
study on Feature Clusters Compression (FCC). Appendix A
introduces a detailed formula derivation for the feasibility
demonstration of FCC (described in Section 3.2 of our pa-
per). Appendix B presents implementation details that are
not described in Sections 4.1 and 4.2. An evaluation of dif-
ferent compression strategies on different datasets is pre-
sented in Appendix C. Pseudo-code for FCC and ECE anal-
ysis can be found in Appendix D and Appendix E, respec-
tively. Visualization of features is shown in Appendix F.

A. Detailed Formula Derivation
Detailed formula derivation for the feasibility demon-

stration of FCC is provided in this part.
Setting. We present a Fully Connected (FC) network

of binary classification to prove the feasibility, and its ar-
chitecture is shown in Fig. 1. The FC network contains an
input layer with 3 neurons, a hidden layer with 3 neurons{
a1, a2, a3

}
and an output layer with 2 neurons

{
o1, o2

}
.{

τx1, τx2, τx3

}
and

{
x1, x2, x3

}
are the multiplied and

original features, respectively, and they both belong to class
1. The scaling factor of class 1 is τ (τ > 1).

{
y1, y2

}
and{

y1
′, y2

′} are outputs of the multiplied and original feature
produced by the FC network, respectively.

{
wi1, wi2, wi3

}
and bi are weights and bias of the neuron ai (i ∈

{
1, 2, 3

}
),

respectively.
{
nj1, nj2, nj3

}
and zj are weights and bias of

the neuron oj (j ∈
{
1, 2

}
), respectively.

If the FC network can normally work, the classification
result of the original feature will be equal to that of the mul-
tiplied feature, i.e., y1′ > y2

′ when y1 > y2.
Outputs of the Multiplied and Original Features. The

outputs
{
a1, a2, a3

}
of the hidden layer can be formulated

as follows:

a1 = τw11x1 + τw12x2 + τw13x3 + b1 (1)

a2 = τw21x1 + τw22x2 + τw23x3 + b2 (2)

a3 = τw31x1 + τw32x2 + τw33x3 + b3 (3)

and the outputs (y1 and y2) of the multiplied feature can be
expressed as follows:

y1 = n11a1 + n12a2 + n13a3 + z1

= n11(τw11x1 + τw12x2 + τw13x3) + n11b1+

n12(τw21x1 + τw22x2 + τw23x3) + n12b2+

n13(τw31x1 + τw32x2 + τw33x3) + n13b3+

z1

(4)

y2 = n21a1 + n22a2 + n23a3 + z2

= n21(τw11x1 + τw12x2 + τw13x3) + n21b1+

n22(τw21x1 + τw22x2 + τw23x3) + n22b2+

n23(τw31x1 + τw32x2 + τw33x3) + n23b3+

z2

(5)

Figure 1. (a) Architecture of the FC network. (b) Visualization of
features of classes 0 and 9 of CIFAR-10-LT-100.

Figure 2. Relationship between planes η and η′ and feature points
in geometric space. When feature points are above plane η, (a)
plane η′ is below plane η, or (b) plane η′ is above plane η. When
feature points are below plane η, (c) plane η′ is above plane η, or
(d) plane η′ is below plane η.

then we denote (y1−y2) as η, (w11x1+w12x2+w13x3) as
X1, (w21x1 + w22x2 + w23x3) as X2, (w31x1 + w32x2 +
w33x3) as X3 and (n11b1+n12b2+n13b3+z1)−(n21b1+
n22b2+n23b3+ z2) as B, further η is converted as follows:

η = τk1X1 + τk2X2 + τk3X3 +B (6)

where ki is (n1i − n2i), i ∈
{
1, 2, 3

}
. We can notice that η

is a (decision) plane in geometric space when η = 0. Due
to y1 > y2, η > 0 and Eq. (6) can be formulated as follows:{

τd1X1 + τd2X2 + τd3X3 > 1, B < 0

τd1X1 + τd2X2 + τd3X3 < 1, B > 0
(7)

where di denotes−ki/B, i ∈
{
1, 2, 3

}
. In geometric space,

the point (X1, X2, X3) is above the plane when B < 0,
while it is below the plane when B > 0. The case of B = 0
will be discussed later. On the same principle, we make
y′1 − y′2 equal to η′, which can be formulated as follows:

η′ = k1X1 + k2X2 + k3X3 +B (8)

When η′ = 0, Eq. (8) can be formulated as follows:

d1X1 + d2X2 + d3X3 = 1 (9)

where η′ is also a plane when η′ = 0. We can observe that{
1/d1, 1/d2, 1/d3

}
and

{
1/τd1, 1/τd2, 1/τd3

}
are inter-

cepts of planes η′ and η, respectively. And the intercepts of
plane η′ are τ times of that of plane η, so planes η and η′ are
parallel in geometric space. Meanwhile, plane η′ is either
above plane η or below it depending on the intercepts.

Analysis. In the following, we will discuss the relation-



ship between planes η and η′ and feature points in geomet-
ric space to explore whether y′1 is also greater than y′2 under
y1 > y2.

(1) When B < 0, the point (X1, X2, X3) is above plane
η based on Eq. (7). If plane η′ is below plane η, the point is
also above plane η′, as shown in Fig. 2a, so d1X1+d2X2+
d3X3 > 1 in Eq. (9), and then we can get η′ > 0 (i.e.,
y′1 > y′2) based on Eqs. (8) and (9). That implies the FC can
normally work on this point.

If plane η′ is above plane η, the point might be above or
below plane η′, as shown in Fig. 2b. The point can also be
correctly classified when it is above plane η′ since d1X1 +
d2X2 + d3X3 > 1, but when it is below plane η′, d1X1 +
d2X2 + d3X3 < 1 and y′1 < y′2, which means the FC will
misclassify the point.

(2) When B > 0, the point is below plane η. If plane η′

is above plane η, the point is also blow plane η′ as shown
in Fig. 2c, so d1X1 + d2X2 + d3X3 < 1, and we can get
η′ > 0, i.e., y′1 > y′2. On this condition, the FC can also
normally classify this point.

If plane η′ is below plane η, the point might be above
or below plane η′, as shown in Fig. 2d. When the point is
above plane η′, d1X1+d2X2+d3X3 > 1 and y′1 < y′2, i.e.,
the FC cannot correctly classify the point. When the point
is below plane η′, d1X1 + d2X2 + d3X3 < 1 and y′1 > y′2,
so the FC can normally work this point.

(3) When B = 0, planes η and η′ coincide with each
other, which will make y′1 > y′2 when y1 > y2.

In a nutshell, the classifier can normally work on original
features, except those falling between planes η and η′, i.e.,
“misclassified area” in Fig. 2.

B. Implementation Details
We provide implementation details that are not described

in Sections 4.1 and 4.2.
For CIFAR-LT and iNaturalist 2018, we utilize simple

data augmentation by applying random cropping and ran-
dom horizontal flipping to 32 × 32 and 224 × 224 size,
respectively. For ImageNet-LT, we employ simple ran-
dom horizontal flips, color jittering, and take random crops
224 × 224 size. For two-stage training methods, the bal-
anced fine tuning both starts from 160th epoch. The hyper-
parameters of compared methods are shown in Tab. 1.

C. Compression Strategies
We evaluate different compression strategies (described

in section 3.1) on CIFAR-10-LT-50, CIFAR-10-LT-100 and
CIFAR-100-LT-50. The results are shown in Fig. 3, where
the top, middle and bottom rows denote the results on
CIFAR-10-LT-50, CIFAR-10-LT-100 and CIFAR-100-LT-
50, respectively. Consistent with the conclusions described
in Section 4.3, in all datasets, equal difference compres-

Family Method Hyper-parameters

Re-weighting

Focal loss γ = 2
CB Focal loss β = 0.9, γ = 1
CBCE β† = 0.9, β⋆ = 0.9999
CELS ϵ = 0.1
CELAS Smooth head and tail: 0.4 and 0.1
LDAM Scale: 30, max margin: 0.5
CDT γ = 0.2

Mixup
Input Mixup α = 1
Manifold Mixup α = 1, location: pool
Remix α = 1, κ = 3, τ = 0.5

Two-stage training DiVE Temperature: 2, power: 0.5, α = 0.5

Multi-expert SADE The number of experts is 3.
NCL The number of experts is 3.

Table 1. Implementation details of compared methods.† and ⋆ de-
note the β is for CIFAR-100-LT and CIFAR-10-LT, respectively.

sion outperforms other strategies. Half (Top 50%) com-
pression exhibits the second best results. Uniform and Half
(Bottom 50%) compression achieve poor performance. In
some cases, they obtain better results than those of baseline
(vanilla ResNet-32), but performance improvement is lower
than other strategies.

Furthermore, we also introduce the compression strategy
for τ < 1 (Reverse compression), which can be formulated
as follows:

τi = 1− γ ∗ i/C (10)

where γ ∈ (0, 1] is a scaling hyper-parameter, C is the num-
ber of classes, and i ∈ [0, C) is the index of class. The re-
sults are shown in Fig. 3, where reverse compression fails to
improve raw methods. This is because the original features
are expanded rather than compressed, and the feature points
are mapped sparsely, making it easier to cross the boundary
during testing.

Algorithm 1 Feature Clusters Compression (FCC)
Input: Original backbone features F and their labels d in
each batch, batch size B and number of classes N .
Parameter: The scaling hyper-parameter γ
Output: Multiplied features F ′.

1: Setting τ for each class.
2: for i = 0 to (N − 1) do
3: τi ← 1 + γ ∗ (1− i/N).
4: end for
5: for j = 0 to (B − 1) do
6: Fj

′ ← Fj ∗ τdj

7: end for
8: return F ′

Meanwhile, we visualize the recall and confusion matrix
between baseline and FCC, as shown in Fig. 4 and Fig. 5,
respectively. The results illustrate FCC effectively improves
the performance of minority classes. We observe that FCC
might damage the performance of some majority classes,



Figure 3. Accuracy comparisons of each compression strategy. The top, middle and bottom rows show the results on CIFAR-10-LT-50,
CIFAR-10-LT-100 and CIFAR-100-LT-50, respectively. Baseline is vanilla ResNet-32.

Figure 4. Recall comparisons of each class between baseline (Vanilla ResNet-32) and FCC with equal difference compression (γ is set to
0.5 and 1 on CIFAR-10-LT and CIFAR-100-LT, respectively).

Figure 5. Confusion matrices produced by baseline (vanilla ResNet-32) and FCC on CIFAR-10-LT-50 and CIFAR-10-LT-100.



but it does not affect the overall performance.

D. Pseudo-code of FCC
The pseudo-code of FCC in training procedure is pre-

sented in Algorithm 1. FCC can be achieved with a concise
code snippet, such that it can be easily applied to any deep
neural network.

E. Discuss Expected Calibration Error (ECE).
We show the reliability diagrams of different methods

on CIFAR-100-LT-100 in Fig. 6, which illustrate our FCC
can not only effectively improve the accuracy (from 39.1%
to 41.8%) but also greatly reinforce the network calibration
(ECE from 37.8% to 3.46%) for long-tailed recognition.

Figure 6. Reliability diagrams of different methods on CIFAR-
100-LT-100.

F. Visualization for sparse clusters
In our paper, we describe that the features of minority

classes are mapped to sparse clusters relative to those of
majority classes. To demonstrate this, we provide the visu-
alization of the features of class 0 and class 9 from CIFAR-
10-LT-100, as shown in Fig. 1b, in which class 9 exhibits
sparser clusters than class 0.


