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In this supplemental material, we provide more imple-
mentation and training details, and then present more results
and discussions.

1. Implementation and training details
We use the Stable Diffusion model [12] as the example

to illustrate our implementation details.
Box Grounding Tokens with Text. Each grounded text
is first fed into the text encoder to get the text embedding
(e.g., 768 dimension of the CLIP text embedding in Stable
Diffusion). Since the Stable Diffusion uses features of 77
text tokens outputted from the transformer backbone, thus
we choose “EOS” token feature at this layer as our grounded
text embedding. This is because in the CLIP training, this
“EOS” token feature is chosen and applied a linear transform
(one FC layer) to compare with visual feature, thus this
token feature should contain whole information about the
input text description. We also tried to directly use CLIP
text embedding ( after linear projection), however, we notice
slow convergence empirically probably due to unaligned
space between the grounded text embedding and the caption
embeddings. Following NeRF [10], we encode bounding
box coordinates with the Fourier embedding with output
dimension 64. As stated in the Equation 5 in the main paper,
we first concatenate these two features and feed them into a
multi-layer perceptron. The MLP consists of three hidden
layers with hidden dimension 512, the output grounding
token dimension is set to be the same as the text embedding
dimension (e.g., 768 in the Stable Diffusion case). We set
the maximum number of grounding tokens to be 30 in the
bounding box case.

Box Grounding Tokens with Image. We use the similar
way to get the grounding token for an image. We use the
CLIP image encoder (ViT-L-14 is used for the Stable Dif-
fusion) to get an image embedding. We denote the CLIP
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training objective as maximizing (Ptht)
⊤(Pihi) (we omit

normalization), where ht is “EOS” token embedding from
the text encoder, hi is “CLS” token embedding from the
image encoder, and Pt and Pi are linear transformation for
text and image embedding, respectively. Since ht is the
text feature space used for grounded text features, to ease
our training, we choose to project image features into the
text feature space via P⊤

t Pihi, and normalized it to 28.7,
which is average norm of ht we empirically found. We
also set the maximum number of grounding tokens to be 30.
Thus, 60 tokens in total if one keep both image and text as
representations for a grounded entity.

Keypoint Grounding Tokens. The grounding token for
keypoint annotations is processed in the same way, ex-
cept that we also learn N person token embedding vectors
{p1, . . . ,pN} to semantically link keypoints belonging to
the same person. This is to deal with the situation in which
there are multiple people in the same image that we want
to generate, so that the model knows which keypoint corre-
sponds to which person. Each keypoint semantic embedding
ftext(e) is processed by using the text encoder, for example,
we forward the text: “left eye” into the encoder to get
its semantic embedding; the dimension of each person token
is set the same as text embedding dimension. The grounding
token is calculated by:

he = MLP(ftext(e) + pj ,Fourier(l)) (1)

where l is the x, y location of each keypoint and pj is the
person token for the j’th person. In practice, we set N as
10, which is the maximum number of persons allowed to be
generated in each image. Thus, we have 170 tokens in the
COCO dataset (i.e., 10*17; 17 keypoint annotations for each
person).

Grounding tokens for Spatially Aligned Condition.
This type of condition includes edge map, depth map, se-
mantic map, and normal map, etc; they can be represented
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Figure 1. Additional grounding input is fed into the Unet input for
spatially aligned conditions.
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Figure 2. Three different types of grounding data for box.

as C ×H ×W tensor. We resize spatial size into 256× 256
and use the convnext-tiny [9] as the backbone to output a
feature with spatial size as 8 × 8, which then is flattened
into 64 grounding tokens. We notice that it can help training
faster if we also provide the grounding condition l into the
Unet input. As shown in the Figure 1, in this case, the input
is CONCAT(fl(l), zt) where fl is a simple downsampling
network to reduce l into the same spatial dimension as zt,
which is the noisy latent code at the time step t. In this case,
the first conv layer of Unet needs to be trainable.

Gated Self-Attention Layers. Our inserted self-attention
layer is the same as the original diffusion model self-
attention layer at each Transformer block, except that we
add one linear projection layer which converts the grounding
token into the same dimension as the visual token. For ex-
ample, in the first layer of the down branch of the UNet [13],
the projection layer converts grounding token of dimension
768 into 320 (which is the image feature dimension at this
layer), and visual tokens are concatenated with the grounding
tokens as the input to the gated attention layer.

Training Details. For all COCO related experiments (Sec.
5.1 in the main paper), we train LDM with batch size 64
using 16 V100 GPUs for 100k iterations. In the scaling
up training data experiment (in Sec. 5.2 of the main paper),
we train for 400k iterations for LDM, but 500K iterations
with batch size of 32 for the Stable diffusion modeL For
all training, we use learning rate of 5e-5 with Adam [6],
and use warm-up for the first 10k iterations. We randomly
drop caption and grounding tokens with 10% probability for
classifier-free guidance [4].

Data Details. In the main paper Sec.5.1, we study three
different types of data for box grounding. The training data
requires both text c and grounding entity e as the full con-
dition. In practice, we can relax the data requirement by
considering a more flexible input, i.e. the three types of data
shown in Figure 2(a). (i) Grounding data. Each image is
associated with a caption describing the whole image; noun
entities are extracted from the caption, and are labeled with
bounding boxes. Since the noun entities are taken directly
from the natural language caption, they can cover a much
richer vocabulary which will be beneficial for open-world
vocabulary grounded generation. (ii) Detection data. Noun-
entities are pre-defined closed-set categories (e.g., 80 object
classes in COCO [8]). In this case, we choose to use a null
caption token as introduced in classifier-free guidance [4]
for the caption. The detection data is of larger quantity (mil-
lions) than the grounding data (thousands), and can therefore
greatly increase overall training data. (iii) Detection and
caption data. Noun entities are same as those in the detec-
tion data, and the image is described separately with a text
caption. In this case, the noun entities may not exactly match
those in the caption. For example, in Figure 2(a), the caption
only gives a high-level description of the living room without
mentioning the objects in the scene, whereas the detection
annotation provides more fine-grained object-level details.

2. Ablation Study

Ablation on gated self-attention. As shown in the main
paper Figure 3 and Equation 8, our approach uses gated
self-attention to absorb the grounding instruction. We can
also consider gated cross-attention [1], where the query is
the visual feature, and the keys and values are produced
using the grounding condition. We ablate this design on
COCO2014CD data using LDM. Compare with the table
1 in the main paper, we can find that it leads to similar
FID: 5.8, but worse YOLO AP: 16.6 (compared to 21.7 for
self-attention in the Table). This shows the necessity of
information sharing among the visual tokens, which exists
in self-attention but not in cross-attention.

Ablation on null caption. We choose to use the
null caption when we only have detection annotations
(COCO2014D). An alternative scheme is to simply com-
bine all noun entities into a sentence; e.g., if there are two
cats and a dog in an image, then the pseudo caption can
be: “cat, cat, dog”. In this case, the FID becomes
worse and increases to 7.40 from 5.61 (null caption, refer to
main paper table 1). This is likely due to the pretrained text
encoder never having encountered this type of unnatural cap-
tion during LDM training. A solution would be to finetune
the text encoder or design a better prompt, but this is not the
focus of our work.
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Figure 3. Inpainting results. Existing text2img diffusion models
may generate objects that do not tightly fit the masked box or miss
an object if the same object already exists in the image.

1%-3% 5%-10% 30%-50%
LDM [12] 25.9 23.4 14.6
GLIGEN-LDM 29.7 30.9 25.6
Upper-bound 41.7 43.4 45.0

Table 1. Inpainting results (YOLO AP) for different size of objects.

3. Grounded inpainting

3.1. Text Grounded Inpainting

Like other diffusion models, GLIGEN can also work for
the inpainting task by replacing the known region with a
sample from q(zt|z0) after each sampling step, where z0 is
the latent representation of an image [12]. One can ground
text descriptions to missing regions, as shown in Figure 3. In
this setting, however, one may wonder, can we simply use a
vanilla text-to-image diffusion model such Stable Diffusion
or DALLE2 to fill the missing region by providing the object
name as the caption? What are the benefits of having extra
grounding inputs in such cases? To answer this, we conduct
the following experiment on the COCO dataset: for each
image, we randomly mask one object. We then let the model
inpaint the missing region. We choose the missing object
with three different size ratios with respect to the image:
small (1%-3%), median (5%-10%), and large (30%-50%).
5000 images are used for each case.

Table 1 demonstrates that our inpainted objects more
tightly occupy the missing region (box) compared to the
baselines. Fig. 3 provides examples to visually compare the
inpainting results (we use Stable Diffusion for better quality).
The first row shows that baselines’ generated objects do not
follow the provided box. The second row shows that when
the missing category is already present in the image, they
may ignore the caption. This is understandable as baselines
are trained to generate a whole image following the caption.
Our method may be more favorable for editing applications,
where a user might want to generate an object that fully fits
the missing region or add an instance of a class that already
exists in the image.

Real Input pix2pixHD Ours (w/o caption) Ours (w caption)

Figure 4. Keypoint results. Our model generates higher quality
images conditioned on keypoints, and it allows to use caption to
specify details such as scene or gender.

Model FID AP AP50 AP75

pix2pixHD [16] 142.4 15.8 33.7 13.0
GLIGEN (w/o caption) 31.02 31.8 53.5 31.0
GLIGEN (w caption) 27.34 31.5 52.9 31.0
Upper-bound - 62.4 75.0 65.9

Table 2. Conditioning with Human Keypoints evaluated on
COCO2017 validation set. Upper-bound is calculated on real im-
ages scaled to 256 × 256.

3.2. Image Grounded Inpainting

As we previously demonstrated, one can ground text to
missing region for inpainting, one can also ground reference
images to missing regions. Figure 5 shows inpainting results
grounded on reference images. To remove boundary artifacts,
we follow GLIDE [11], and modify the first conv layer by
adding 5 extra channels (4 for z0 and 1 for inpainting mask)
and make them trainable with the new added layers.

4. Study for Keypoints Grounding
Although we have thus far demonstrated results with

bounding boxes, our approach has flexibility in the ground-
ing condition that it can use for generation. To demonstrate
this, we next evaluate our model with another type of ground-
ing condition: human keypoints. We use the COCO2017
dataset; details of the tokenization process for keypoints can
be found in the supp. We compare with pix2pixHD [16], a
classic image-to-image translation model. Since pix2pixHD
does not take captions as input, we train two variants of our
model: one uses COCO captions, the other does not. In the
latter case, null caption is used as input to the cross-attention
layer for a fair comparison.

Fig. 4 shows the qualitative comparison. Clearly,
our method generates much better image quality. For
our model trained with captions, we can also specify
other details such as the scene (“A person is skiing

down a snowy hill”) or person’s gender (“A woman is

holding a baby”). These two inputs complement each
other and can enrich a user’s controllability for image cre-
ation. We measure keypoint correspondence (similar to the
YOLO score for boxes) by running a MaskRCNN [3] key-
point detector on the generated images. Both of our model
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Figure 5. Image grounded Inpainting. One can use reference images to ground holes they want to fill in.

variants produce similar results; see Table 2.

5. Additional quantitative results
In this section, we show more studies with our pretrained

model using our largest data (GoldG, O365, CC3M, SBU).
We had reported this model’s zero-shot performance on
LVIS [2] in the main paper Table 3. Here we finetune this
model on LVIS, and report its GLIP-score in Table 3. Clearly,
after finetuning, we show much more accurate generation
results, surpassing the supervised baseline LAMA [7] by a
large margin.

Similarly, we also test this model’s zero-shot performance
on the COCO2017 val-set, and its finetuning results are in
Table 4. The results show the benefits of pretraining which
can largely improve layout correspondence performance.

6. More qualitative results and discussion
We show qualitative comparisons with layout2img base-

lines in Figure 6, which complements the results in Sec. 5.1
of the main paper. The results show that our model has
comparable image quality when built upon LDM, but has
more visual appeal and details when built upon the Stable
Diffusion model.

Lastly, we show more grounded text2img results with
bounding boxes in Figure 7 and other modality grounding
results in Figure 8 9 10 11 12 13. Note that our keypoint
model only uses keypoint annotations from COCO [8] which
is not linked with person identity, but it can successfully
utilize and combine the knowledge learned in the text2img
training stage to control keypoints of a specific person. Out
of curiosity, we also tested whether the keypoint grounding
information learned on humans can be transferred to other
non-humanoid categories such as cat or lamp for keypoint
grounded generation, but we find that our model struggles
in such cases even with scheduled sampling. Compared to
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Figure 6. Layout2img comparison. Our model generates better
quality images, especially when using stable diffusion. Baseline
images are all copied from TwFA [17]

bounding boxes, which only specify a coarse location and
size of an object in the image and thus can be shared across
all object categories, keypoints (i.e., object parts) are not
always shareable across different categories. Thus, while
keypoints enable more fine-grained control than boxes, they
are less generalizable.
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Model Pre-training data Traing data FID AP APr APc APf

LAMA [7] – LVIS 151.96 2.0 0.9 1.3 3.2
GLIGEN-LDM COCO2014CD – 22.17 6.4 5.8 5.8 7.4
GLIGEN-LDM COCO2014D – 31.31 4.4 2.3 3.3 6.5
GLIGEN-LDM COCO2014G – 13.48 6.0 4.4 6.1 6.6
GLIGEN-LDM GoldG,O365 – 8.45 10.6 5.8 9.6 13.8
GLIGEN-LDM GoldG,O365,SBU,CC3M – 10.28 11.1 9.0 9.8 13.4
GLIGEN-LDM GoldG,O365,SBU,CC3M LVIS 6.25 14.9 10.1 12.8 19.3

Upper-bound – – – 25.2 19.0 22.2 31.2

Table 3. GLIP-score on LVIS validation set. Upper-bound is provided by running GLIP on real images scaled to 256 × 256.

YOLO score
Model FID AP AP50 AP75

LostGAN-V2 [14] 42.55 9.1 15.3 9.8
OCGAN [15] 41.65 –
HCSS [5] 33.68 –
LAMA [7] 31.12 13.40 19.70 14.90
TwFA [17] 22.15 – 28.20 20.12
GLIGEN-LDM 21.04 22.4 36.5 24.1

After pretrain on GoldG,O365,SBU,CC3M
GLIGEN-LDM (zero-shot) 27.03 19.1 30.5 20.8
GLIGEN-LDM (finetuned) 21.58 30.8 42.3 35.3

Table 4. Image quality and correspondence to layout are compared
with baselines on COCO2017 val-set.
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Caption: “Space view of a planet and its sun”
Grounded text: planet, sun

Caption: “a a photo of a hybrid between a bee and a rabbit”
Grounded text: hybrid between a bee and a rabbit, flower

Caption: “cartoon sketch of a little girl with a smile and balloons, old style, detailed, elegant, intricate”
Grounded text: girl with a smile, balloon, balloon, balloon

Caption: “Walter White in GTA v”
Grounded text: Walter White, car, bulldog

Caption: “two pirate ships on the ocean in minecraft”
Grounded text: a pirate ship, a pirate ship

Figure 7. Bounding box grounded text2image generation. Our model can ground noun entities in the caption for controllable image
generation
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Caption: “Barack Obama is sitting at a desk”
Grounded keypoints: plotted dots on the left

Caption: “Steve Jobs is working with his laptop”
Grounded keypoints: plotted dots on the left

Figure 8. Results for keypoints grounded generation.

Caption: “fox wallpaper, digit art, colorful”
Grounded hed map: the left image

Caption: “a small church is sitting in a garden”
Grounded hed map: the left image

Figure 9. Results for HED map grounded generation.
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Caption: “a chair and a table”
Grounded canny map: the left image

Caption: “A Humanoid Robot Designed for Companionship”
Grounded canny map: the left image

Figure 10. Results for canny map grounded generation.

Caption: “a butterfly, ultra details”
Grounded depth map: the left image

Caption: “a busy street with many people”
Grounded depth map: the left image

Figure 11. Results for depth map grounded generation.

8



Caption: “the front of a building ”
Grounded normal map: the left image

Caption: “a long hallway with pipes on the ceiling”
Grounded normal map: the left image

Figure 12. Results for normal map grounded generation.

Caption: “a photo of a bedroom”
Grounded semantic map: the left image

Caption: “a man is drawing”
Grounded semantic map: the left image

Figure 13. Results for semantic map grounded generation.
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