
A. Datasets, Models and Fine-tuning Hyperparameters

Datasets The 19 Fine-grained datasets contain 19 commonly used fine-grained visual classification datasets, covering a
wide range of domains, including objects, scene, plants, animals, food, texture, medical, logo and art. The DomainNet [45]
benchmark is designed for evaluating multi-source domain adaptation in object recognition. It contains 0.6 million images
across 6 domains (clipart, infograph, painting, quickdraw, real, and sketch). All domains include 345 categories (classes)
of objects. We use the official train/test splits in our experiments. The VTAB [61] benchmark is designed for evaluating
the transferability of pre-trained models. It consists of 19 datasets and the tasks are categorized into natural, structured and
special. Some of the datasets can also be categorized as in the 19 fine-grained datasets. Note that there are some datasets also
exists in the 19 fine-grained datasets. We include them when reporting the VTAB performance. Currently we used 15 of the 19
datasets for VTAB, covering all the categories. More detailed information of each dataset can be found in Table 3.

Table 3. Datasets statistics. For the aircrafts, flowers and surface dataset, the original training set and validation set are combined following
the practice. Note datasets noted with * are not included in our experiments.

Benchmark Dataset Names Alias Domain Classes Training Test

19 Fine-grained

Stanford Dogs [30] dogs animals 120 12,000 8,580
CUB-Birds 200 [56] birds animals 200 5,994 5,794
Oxford Flowers [43] flowers plants 102 2,040 6,149
VegFru [19] vegfru plants 290 29,000 116,156
Herbarium 2019 [52] herbarium plants 683 31, 546 2,679
FGVC Aircrafts [38] aircrafts objects 100 6,667 3,333
Stanford Cars [32] cars objects 196 8,144 8,041
MIT Indoor-67 [50] mit67 scene 67 5,360 1,340
European Flood Depth [3] flood scene 2 3153 557
NWPU Resisc45 [7] resisc45 scene 45 25,200 6,300
Food-101 [6] food101 food 101 12,000 8,500
iFood [28] ifood food 251 118,475 11,994
Describable Textures [8] dtd texture 47 4,230 1,410
Open Surface-2500 [4] surface texture 23 48,875 8,625
Magnetic Tile [23] tile texture 5 1,008 336
Pneumonia [29] pneumonia medical 2 25,216 624
Malaria Cell Images [48] cell medical 2 20,668 6,890
BelgaLogos [25] logo logo 27 7,500 2,500
SemArt [15] semart art 26 18,174 3,208

DomainNet

Clipart clipart clipart 345 33,525 14,604
Real real real 345 120,906 52,041
Quickdraw quickdraw quickdraw 345 120,750 51,750
Painting painting painting 345 50,416 21,850
Inforgraph inforgraph inforgraph 345 36,023 15,582
Sketch sketch sketch 345 48,212 20,916

VTAB

Caltech101* [13] caltech101 natural - objects 101 3,060 6,084
SUN397* [58] sun397 natural - scene 397 73,257 26,032
Oxford Flowers [43] flowers natural - plants 102 2,040 6,149
CIFAR-100 [33] cifar100 natural - objects 100 50,000 10,000
SVHN [41] svhn natural - object 10 73,257 26,032
Oxford IIIT Pet [44] pets natural - animal 37 3,680 3,669
Describable Textures [8] dtd natural - texture 47 4,230 1,410
NWPU Resisc45 [7] resisc45 specialized - scene 45 25,200 6,300
EuroSAT [18] eurosat specialized - scene 10 20,250 6,750
Diabetic Rethinopathy [27] retinopathy specialized - medical 5 35,126 53,576
PatchCamelyon [55] pcam specialized - medical 2 262,145 32,769
CLEVR distance [24] clevr_dist structured 7 70,000 15,000
CLEVR counting [24] clevr_dist structured 8 70,000 15,000
Dmlab Frames* dmlab structured 6 65,550 22,628
dSprites orientation [39] dsprites_ori structured 40 663,552 73,728
dSprites location [39] desprites_loc structured 6 663,552 73,728
KITTI distance [16]* kitti_dist structured 4 7,481 7,518
Small NORB azimuth [34] smallnorb_elevation structured 18 24,300 24,300
Small NORB elevation [34] smallnorb_azimuth structured 9 24,300 24,300



Models The TIMM and torchvision model zoo collected over 590 ImageNet pre-trained models in various architectures
and training recipes. We filtered out 409 models that can be fine-tuned with batch size 32 and evaluated the single image
inference latency of the 400+ models on single GPU. The scatter plot of latency and accuracy can be seen in Fig. 6(a). We
can identify the Pareto frontier models of the 400+ models, spanning the latency from 3 ms to 120 ms. We select 22 widely
used models that are near the Pareto Front curve, which covers a wide range of architecture families, including ReseNet [17],
DenseNet [21], MobileNet [20], EfficientNet [53], ViTs [11], Swin-T [36] and ConvNeXt [37]. The detailed statistics of the
selected 22 models can be seen in Table 4.

Figure 6. The statistics of the 500+ ImageNet pre-trained models. The latency is measured on V100 GPU with batch size 1. The dashed line
connects the Pareto Frontier models. The blue crossed models are our selected 22 models and the red crossed dot is the reference model -
DenseNet-169.

Table 4. The statistics of the 22 models, which are ranked by their single image inference latency (ms) on the V100 GPU.

Model Name Arch Family Acc Pretrain Img Size Latency FLOPs #Params

1 resnet18 resnet 69.74 IN-1K 224 3.78 1.82 11.69
2 mobilenet_v2 mobilenet 71.88 IN-1K 224 7.33 0.31 3.50
3 mixer_b16_224 others 76.61 IN-1K 224 9.10 12.62 59.88
4 mixer_b16_224_in21k others - IN-21K 224 9.10 12.62 59.88
5 wide_resnet50_2 resnet 81.45 IN-1K 224 9.94 11.43 68.88
6 convnext_tiny convnext 82.06 IN-1K 224 10.63 4.47 28.59
7 vit_small_patch16_224 vit 81.40 IN-1K 224 11.71 4.61 22.05
8 vit_small_patch16_384 vit 83.81 IN-1K 384 11.88 15.52 22.2
9 vit_base_patch16_224 vit 84.53 IN-1K 224 11.88 17.58 86.57

10 vit_base_patch16_224_in22k vit - IN-21K 224 11.88 17.58 86.57
11 resmlp_24_224 others 79.38 IN-1K 224 12.67 5.96 30.02
12 efficientnet_b0 efficientnet 76.30 IN-1K 224 15.06 0.40 5.29
13 resnet101 resnet 81.93 IN-1K 224 17.48 7.83 44.55
14 convnext_base convnext 83.82 IN-1K 224 19.68 15.38 88.59
15 convnext_base_in22ft1k convnext 85.80 IN-21K-1K 224 19.60 14.38 88.59
16 gmixer_24_224 others 78.04 IN-1K 224 19.74 5.28 24.72
17 convnext_small convnext 83.13 IN-1K 224 19.80 8.70 50.22
18 efficientnet_b3 efficientnet 81.10 IN-1K 300 24.27 2.01 12.23
19 densenet121 densenet 75.58 IN-1K 224 25.73 2.87 7.98
20 swin_base_patch4_window7_224 swin 85.25 IN-1K 224 31.90 15.47 87.77
21 swin_base_patch4_window7_224_in22k swin - IN-21K 224 31.90 15.47 87.77
22 densenet169 densenet 75.90 IN-1K 224 36.13 3.40 14.15

Fine-tuning Hyperparameters All models are trained with a single GPU with the same settings with the hyperparameter
search ranges. We performed fine-tuning with following hyper-parameters: we fine-tune 30 epochs with SGD with Nesterov
momentum 0.9, batch size of 32 and weight decay of 10�4. The learning rate ⌘ decays by 0.1⇥ at 15th and 25th epochs. We per-
formed a grid search of with various initial learning rates and data augmentation strategies, i.e., ⌘0 2 {0.05, 0.01, 0.005, 0.001}
and data_aug 2 {rrcrop,rcrop}. Here rrcrop stands for random resized cropping, which randomly crops ratio ranging
from 0.08 to 1.0 with random aspect ratio between [3/4, 4/3], which is adopted in [51]. And rcrop stands for random



cropping, which differs with with rrcrop in that it uses fixed cropping ratio (0.875). We report the best top-1 test accuracy
of the 8 trials.

B. Feature-Based Model Selection

More Model Selection Failure Cases In additional to the model selection results on the 19 fine-grained datasets (Fig. 2 in
Sec. 2.2, here we show the existing MS results on DomainNet and VTAB in Fig. 7. The feature-based MS methods perform
relatively well on DomainNet datasets (clipart, infograph, painting, quickdraw, real, and sketch). However, the MS methods
have weak or even negative correlations for some of the VTAB tasks. For example, the structured tasks including smallnorb,
clevr and dsprites. Even the simple task SVHN has negative correlations, which indicates that the feature-based MS methods
can fail to estimate the relative performance with only feature information.

Figure 7. Comparison of MS methods on DomainNet and VTAB. The first 6 datasets (clipart, infograph, painting, quickdraw, real, and
sketch) are from DomainNet, and the rest of the datasets are from VTAB.

C. Model Recommendation

Feature Embedding Fig. 8 illustrates how the learning history is represented in the embedding space. Table 5 lists the
details of the features used in learning based MS. The categorical features are converted to one-hot vectors. And all features
are normalized with their minimum and maximum values across all datasets, so that the maximums and minimum values are 1
and 0 after normalization. The visualization of the real embedding of all available fine-tuning tasks can be seen in Fig 9.
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Figure 8. An illustration of learning from the training history and the representation of training data for the recommender system. The left
figure shows the matrix of fine-tuning performance with 4 pairs of dataset and model and the goal is to predict the performance of unknown
pairs. The right figure shows the encoding of the each training job is concatenated features of the datset, model and others.



Table 5. The complete features for embedding fine-tuning tasks for learning-based MS.

Field idx Field Name Feature Name Type One-hot Log Dimension Min Max

1 dataset dataset id category Yes No 41 0 40
1 dataset dataset size scalar No Yes 1 1008 1200000
1 dataset number of classes scalar No Yes 1 2 1000
2 model architecture id category Yes No 500 0 409
2 model architecture family id category Yes No 10 0 9
2 model pre-trained dataset id category Yes No 3 0 2
2 model input size scalar No Yes 1 106 448
2 model GMACs (G) scalar No Yes 1 0.03 46.95
2 model #Parameters (G) scalar No Yes 1 1.88 88.59
3 MS score LFC scalar No No 1 0.002 0.792
3 MS score LogME scalar No No 1 -0.905 2.209
3 MS score PARC scalar No No 1 0.085 80.358

ImageNet x 409 models

6 DomainNet tasks x 22 models

19 fine-grained tasks x 22 models

16 VTAB tasks x 22 models

Figure 9. Visualization of the normalized feature embedding of all training jobs, including 400+ ImageNet training jobs, 418 training jobs on
the 19 fine-grained tasks, 132 training jobs on 6 DomainNet datasets and 352 training jobs on the VTAB datasets.

Training Details We implement the LR and FM algorithms with the xlearn library. The regression models with MAE loss
are trained with SGD until the loss converges. The initial learning rate is 0.2 and the regularization � is 0.002. Instance-wise
normalization is disabled.



D. Heterogeneous Model Zoo and Architecture Bias

The existence of inductive bias for different architectures indicates that there is no single best architecture for all tasks with
different characteristics. Our hypothesis is that the optimal architecture for transfer learning is task dependent. To verify this,
we perform experiments with diverse datasets and architectures. We identify the existence of architecture bias for different
datasets, which confirms the need of task dependent architecture selection. Fig 10 shows the fine-tuning performance of the 22
models on 40 downstream tasks, from which we can see the ranking of the model for each task can be significantly different. It
also demonstrates that the best performing model can be task dependent.

Figure 10. The performance of different architectures on the 19 fine-grained datasets, DomainNet and VTAB. The best performing
architecture for different tasks can be different, For example, EfficientNet-B3 with higher resolution input performs best on aircrafts,
herbarium and smallnorb_azimuth; Swin-B/16 wins on surface, texture (DTD) and semart.

D.1. Architecture bias

Given a task and a set of well pre-trained models in different architectures, we say there is an architecture bias for a task if
one architecture obtains the best performance and outperforms the second best architecture by a large margin (e.g., >2% top-1
accuracy). To justify the significance of architecture bias, we show the following facts for each benchmark: a) the performance
distribution of each architecture over a baseline model across all downstream tasks. b) the performance gain of the best model
over the second best performing model for each task. Fig. 11 ranks the models by their mean performance, from which we can
see ConvNeXt, ViTs, Swin-T, EfficientNet are top ranked models in terms of average performance gain over DenseNet-169.
Note that although ConvNeXt has the strongest average performance, it is not always the best for all tasks. Other architectures
can outperform ConvNeXt significantly for datasets like aircrafts, magnetictile, herbarium, dogs, indicating the existence
of architecture bias for those datasets. Similarly, we observe stronger architecture bias on structured tasks in VTAB, such
as smallnorb elevation and clevr count. For DomainNet, we find ConvNeXt with ImageNet-22K pre-training performs best
on 5 out of 6 domains (e.g., clipart, inforgraph, painting) with significant performance gains over DenseNet169 (> 6%).
However, the best performing architecture on quickdraw is Swin-T and the differences among the architectures are small
(<1%) (Fig. 12c).

We have empirically verified the hypothesis that the optimal architecture for transfer learning is task dependent and there is
no single best model that performs best on every datasets. Here we performed statistical tests for the hypothesis. We conduct
non-parametric paired one-tailed t-test (the Wilcoxon signed-rank test) on whether the selected model’s performance is greater
than other fine-tuning methods across 19 fine-tuning tasks. The null hypothesis H0 states that the mean performance difference



Figure 11. The significance of architecture bias on the 19 fine-grained datasets and VTAB benchmark. The first column shows the
performance gain over DenseNet-169 on downstream tasks for each model. The models are ranked by their mean accuracy gain. The second
column shows the performance gain of the optimal model over the second best performing model for each dataset.

Table 6. The Wilcoxon signed-rank test on whether the row model is significantly better than the column model on the 19 fine-grained tasks.
The table shows the p-value. The bold values indicate that the row model is statistically better than the column model (p < 0.05). No model
is statistically better than all other models.

ViT-S/16-384 Swin-B-P4-W7-in22k Swin-B-P4-W7 Efficientnet-B3 ViT-B/16-224-in21k
ConvNeXt-B-in22ft1k 0.492 0.384 0.198 0.084 0.003

ViT-S/16-384 - 0.147 0.072 0.107 0.002

Swin-B-P4-W7-in22k 0.862 - 0.098 0.121 0.003

Swin-B-P4-W7 0.928 0.909 - 0.156 0.016

Efficientnet-B3 0.893 0.887 0.853 - 0.779

between selected model and baseline model is zero. The alternative hypothesis H1 states that the selected model outperforms
the baseline model. As shown in Fig 11, we pick the top 6 models with the best average performance on the 19 fine-grained
tasks and check whether any of them can be significantly better than others. Table 6 presents the p-values of each test, with the
number of observations equal to 19 for each model compared. There is no single model that outperforms all other models.

D.2. Why do certain model work well on certain datasets?

We investigate the reason why certain model performs better on certain datasets than others. As shown in Fig. 11, the top 4
best performing models are ConvNeXt-B-in22ft1k, Efficientnet-B3, ViT-S/16-384 and Swin-B-in22k. Here we analyze why
they are chosen for certain tasks and what distinguish them from other models.

• ConvNeXt-B-in22ft1k performs best on many downstream tasks, such as birds [56] and food101 [6]. One reason is that
this model is obtained with strong pre-training on ImageNet-22k and then fine-tuned on ImageNet-1K, biasing towards
datasets that are close to ImageNet.

• Efficientnet-B3 [53] is chosen over ConvNeXt for aircrafts. Note that EfficientNet-B3 adopts a higher resolution for input
images (300 instead of 224). Dataset such as aircrafts benefits from the high resolution to make the subtle differences



Figure 12. The Pareto front models for birds, aircrafts and DomainNet-quickdraw. ConvNeXt, EfficientNet-B3 and Swin-T are the best
performing models and have large margin over the other architectures.

noticeable. EfficientNet-B3 also has significant better performance on structured tasks such as smallnorb and clevr in
VTAB, which are synthetic 3D objects tasks such as counting and angle estimation. Similar observation is also made
in [61] that structured tasks behaves differently with nature images.

• Swin-B [36] performs best on quickdraw (Fig. 12c), which has no color or texture information but only shapes. It suggests
that Swin-T has the advantage of capturing the structure information. However the task is so simple the architecture bias or
pre-training makes not too much on performance difference (the difference between ResNet-18 and the wining Swin-T is
only 2%). Similarly previous work [62] finds that ViTs are better than CNNs on this task, and conclude that ViTs are better
preserving shape and structure information.

D.3. More Pareto front results

We have shown that the optimal model is dataset dependent. A natural question to ask is that whether the Pareto front
models for ImageNet continue to be on the Pareto frontier for other downstream tasks. Similar to Fig. 6(a), we plot the scatter
plot of latency and performance for three datasests in Fig 12 and show more results in Fig. 13. We can see that the Pareto
frontier models is actually task dependent, which suggests the need to perform dataset dependent search.



Figure 13. The Pareto front models can be task dependent.
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