
A. Details for ImageNet-E
To guarantee the visual quality of the generated exam-

ples, we choose the animal classes from ImageNet since
they appear more in nature without messy backgrounds.
Specifically, images whose coarse labels in [fish, shark,
bird, salamander, frog, turtle, lizard, crocodile, dinosaur,
snake, trilobite, arachnid, ungulate, monotreme, marsu-
pial, coral, mollusk, crustacean, marine mammals, dog,
wild dog, cat, wild cat, bear, mongoose, butterfly, echin-
oderms, rabbit, rodent, hog, ferret, armadillo,primate] are
picked. The corresponding coarse labels of each class we
refer to can be found in [11]1. Finally, our ImageNet-E
consists of 373 classes. Since the number of masks pro-
vided in ImageNet-S [12] in these classes is 4352, thus
the number of images in each edited kind is 4352. The
ImageNet-E contains 11 kinds of attributes editing, includ-
ing 5 kinds of background editing and 4 kinds of size edit-
ing, as well as one kind of position editing and one kind of
direction editing. Finally, our ImageNet-E contains 47872
images. Experiments on more images can be found in sec-
tion C.3. The comprehensive comparisons with the state-
of-the-art robustness benchmarks are shown in Figure 6. In
contrast to other benchmarks that investigate new out-of-
distribution corruptions or perturbations deep models may
encounter, w conduct model debugging with in-distribution
data to explore which object attributes a model may be sen-
sitive to. The examples in ImageNet-E are shown in Fig-
ure 8. A demo video for our editing toolkit can be found
at this url:https://drive.google.com/file/d/
1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?

usp=sharing. Our code can be found at an anony-
mous url: https://huggingface.co/spaces/

Anonymous-123/ImageNet-Editing.

Benchmarks Description Classes Samples

ImageNet-A Challenging examples 
collected by-hand 200

ImageNet-C Corruptions added on 
images 1000

ImageNet-R Various renditions of 
ImageNet object classes 200

ImageNet-3DCC 3D common corruptions 1000

ImageNet-9
Images whose objects and 

backgrounds are 
disentangled with bbox

370

ImageNet-E Images with attribute-
edited objects 373

Figure 6. Benchmark comparison.

1https://github.com/noameshed/novelty-
detection/blob/master/imagenet categories synset.csv
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Figure 7. Comparisons between the amplitude supervision on
high-frequency components (HF) and amplitude supervision on all
frequency components (All).

B. Background editing
Intuitively, an image with complicated background tends

to contain more high-frequency components, such as edges.
Therefore, a straight-forward way is to define the back-
ground complexity as the amplitude of high-frequency com-
ponents. However, this operation can result in noisy back-
grounds, instead of the ones with complicated textures.
Therefore, we directly define complexity as the amplitude
of all frequency components. The compared results are
shown in Figure 7. It can be observed that the amplitude su-
pervision on high-frequency components tends to make the
model generate images with more noise. In contrast, am-
plitude supervision on all frequency components can help
to generate images with texture-complex backgrounds. To
edit the background adversarially, we set Lc = CE(f(x), y)
where ‘CE’ is the cross entropy loss. f and y are the clas-
sifier and label of x respectively. We adopt the classifier f
from guided-diffusion2.

C. Experimental details
C.1. Details for metrics

In this paper, we care more about how different attributes
impact different models. Therefore, we choose the drop of
top-1 accuracy as our evaluation metric. A lower dropped

2https://github.com/openai/guided-diffusion

https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://huggingface.co/spaces/Anonymous-123/ImageNet-Editing
https://huggingface.co/spaces/Anonymous-123/ImageNet-Editing


Figure 8. Samples from ImageNet-E. From left to right, top to bottom, the images stand for background editing with � = �20, � = 20,
� = 20-adv, randomly shuffled backgrounds, size editing with rate 0.1 and 0.05, randomly rotate, random position, randomly rotate based
on images with object pixel rate 0.05 respectively.
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Figure 9. Attribute editing with DDPMs. Give an input image and its corresponding object mask, the object is firstly removed with
inpainting operation to get the pure background image. Then, we leverage the diffusion process to edit the background image x0 and
object image coherently. � denotes the element-wise blending of these two images using the object mask. For background editing, the
background complexity objective function is added during the diffusion process (Alg. 1, line 5). For other object attributes editing, the
object image needs to be transformed first (Alg. 2, line 1).

accuracy indicates higher robustness against our attribute
changes. The dropped accuracy is defined as:

DA = accoriginal � acc. (8)

The detailed top-1 accuracy (Top-1) and dropped accu-
racy (DA)on our ImageNet-E are listed in Table 4, Table 5
and Table 6, Table 7. All the experiments are conducted for
5 runs and we report the mean value in the tables.

C.2. Classes whose accuracy drops the greatest
To find out which class gets the worst robustness against

attribute changes, we plot the dropped accuracy in Fig-
ure 10. The evaluated models are vanilla RN50 and its
Debiased model. It can be observed that objects that have
tentacles with simple backgrounds are more easily to be at-
tacked. For example, the dropped accuracy of the ‘black
widow’ class reaches 47% for both vanilla and Debiased
models. In contrast, the impact is smaller for images with
complicated backgrounds such as pictures from ‘squirrel
monkey’.

C.3. Experiments on more data
To explore the model robustness against object attributes

on large-scale datasets, we step further to conduct the im-
age editing on all the images in the ImageNet-S validation
set. Finally, the edited dataset ImageNet-E-L shares the
same size as ImageNet-S, which consists of 919 classes
and 10919 images. We conduct both background edit-
ing and size editing to them. The evaluation results are
shown in Table 8. The same conclusion can also be ob-
served. For instance, most models show vulnerability
against attribute changing since the average dropped accu-
racies reach 12.22% and 22.21% in background and size
changes respectively. When the model gets larger, the ro-
bustness is improved. The consistency implies that using
our ImageNet-E can already reflect the model robustness
against object attribute changes.

C.4. Bad case analysis

To make a comprehensive study of how the model be-
haves, we step further to make a comparison of the heat
maps of the originals and edited ones. We choose the
images that are recognized correctly at first but misclassi-
fied after editing. All the attributes editing including back-
ground, size, directions are explored. The heat maps are
visualized in Figure 11. It can be observed that compared
to the SIN and Debiased models, the vanilla RN50 is more
likely to lose its focus on the interest area, especially in the
size change scenario. For example, in the second row, as
it puts his focus on the background, it returns a result with
the ‘nail’ label. The same fashion is also observed in the
background change scenario. The predicted label of ‘night
snake’ turns into ‘spider web’ as the complex background
has attracted its attention. In contrast, the SIN and Debi-
ased models have robust attention mechanisms. The quan-
titative results in Table 5 also validate this. The dropped
accuracy of RN50 (13.35%) is higher than SIN (12.19%)
and Debiased (11.45%) even though the original accuracy
of SIN (0.9157) is lower than vanilla RN50 (0.9269). How-
ever, the SIN also has its weakness. We find that though the
SIN pays attention to the desired region, it can also make
wrong predictions. As shown in the second row of Fig-
ure 11, when the object size gets smaller, the shape-based
SIN model tends to make wrong predictions, e.g., mistaking
the ‘sea urchin’ as ’acorn’ due to the lack of texture anal-
ysis. As a result, the dropped accuracy in the size change
scenario is 24.23% for SIN, even lower than vanilla RN50,
whose dropped accuracy is 21.26%. On the contrary, the
Debiased model can recognize it correctly, profiting from
its shape and texture-biased module. From the above obser-
vation, we can conclude that the texture matters in the small
object scenario.



Table 4. Evaluations under different backgrounds.

Models Ori Inver � = �20 � = 20 � = 20-Adv Random
Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 90.72% 1.97% 85.39% 7.30% 79.34% 13.35% 62.77% 29.92% 79.35% 13.34%
DenseNet121 92.10% 90.61% 1.49% 85.81% 6.29% 83.10% 9.00% 62.90% 29.20% 79.67% 12.43%

EF-B0 92.85% 91.78% 1.07% 85.75% 7.10% 82.14% 10.71% 57.97% 34.88% 77.21% 15.64%
ResNest50 95.38% 93.94% 1.44% 89.05% 6.33% 86.40% 8.98% 68.76% 26.62% 84.10% 11.28%

ViT-S 94.14% 93.32% 0.82% 87.72% 6.42% 85.16% 8.98% 63.02% 31.12% 81.08% 13.06%
Swin-S 96.21% 95.08% 1.13% 91.03% 5.18% 88.88% 7.33% 72.71% 23.50% 86.90% 9.31%

ConvNeXt-T 96.07% 94.64% 1.43% 91.38% 4.69% 89.81% 6.26% 76.24% 19.83% 88.14% 7.93%
RN101 94.00% 91.89% 2.11% 86.95% 7.05% 82.38% 11.62% 64.53% 29.47% 80.43% 13.57%

DenseNet169 92.37% 91.25% 1.12% 86.56% 5.81% 83.94% 8.43% 64.86% 27.51% 80.76% 11.61%
EF-B3 94.97% 93.10% 1.87% 87.20% 7.77% 86.57% 8.40% 65.07% 29.90% 82.05% 12.92%

ResNest101 95.54% 94.44% 1.10% 89.96% 5.58% 88.89% 6.65% 72.51% 23.03% 85.14% 10.40%
ViT-B 95.38% 94.55% 0.83% 90.06% 5.32% 86.95% 8.43% 68.78% 26.60% 84.40% 10.98%

Swin-B 95.96% 95.17% 0.79% 91.50% 4.46% 89.73% 6.23% 74.52% 21.44% 87.71% 8.25%
ConvNeXt-B 96.42% 95.73% 0.69% 92.67% 3.75% 91.56% 4.86% 79.93% 16.49% 90.38% 6.04%

Table 5. Evaluations with different robust models under different backgrounds.

Models Ori Inver � = �20 � = 20 � = 20-Adv Random
Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 90.72% 1.97% 85.39% 7.30% 79.34% 13.35% 62.77% 29.92% 79.35% 13.34%
RN50-A 81.96% 81.30% 0.66% 77.21% 4.75% 68.34% 13.62% 44.09% 37.87% 66.71% 15.25%

RN50-SIN 91.57% 89.34% 2.23% 83.96% 7.61% 79.38% 12.19% 58.41% 33.16% 77.99% 13.58%
RN50-debiasd 93.34% 91.91% 1.43% 87.25% 6.09% 81.89% 11.45% 65.35% 27.99% 81.22% 12.12%
RN50-Augmix 93.50% 92.52% 0.98% 87.24% 6.26% 85.12% 8.38% 63.01% 30.49% 80.56% 12.94%

RN50-ANT 91.87% 90.19% 1.68% 85.25% 6.62% 79.93% 11.94% 56.21% 35.66% 76.51% 15.36%
RN50-DeepAugment 92.88% 91.38% 1.50% 86.26% 6.62% 80.51% 12.37% 60.48% 32.40% 79.56% 13.32%

RN50-T 94.55% 93.50% 1.05% 88.90% 5.65% 87.17% 7.38% 72.66% 21.89% 84.13% 10.42%

C.5. Details for robustness enhancements
Network design—-self-attention-like architecture.

The results in Table 1 show that most vision transformers
show better robustness than CNNs in our scenario. Previous
study has shown that the self-attention-like architecture
may be the key to robustness boost [3]. Therefore, to
ablate whether incorporating this module can help attribute
robustness generalization, we create a hybrid architec-
ture (RN50d-hybrid) by directly feeding the output of res 3
block in RN50d into ViT-S as the input feature. The results
are shown in Table 9. As we can find that while the added
module maintains the robustness on background changes,
it can help to boost the robustness against size changes.
Moreover, the RN50-hybrid can also boost the overall
performance compared to ViT-S.

Training strategy—-Masked image modeling. Con-
sidering that masked image modeling has demonstrated im-
pressive results in self-supervised representation learning
by recovering corrupted image patches [4], it may be robust
to the attribute changes. Thus, we test the Masked AutoEn-
coder (MAE) [19] and SimMIM [52] training strategy based
on ViT-B backbone. As shown in Table 10, the dropped ac-

curacies decrease a lot compared to vanilla ViT-B, validat-
ing the effectiveness of the masked image modeling strat-
egy. Motivated by this success, we also test another kind of
self-supervised-learning strategy. To be specific, we choose
the representative method MoCo-V3 [8] in the contrastive
learning family. After the end-to-end finetuning, it achieves
top-1 83.0% accuracy on ImageNet. It can also improve the
attribute robustness when compared to the vanilla ViT-B,
showing the effectiveness of contrastive learning.

C.6. Hardware
Our experiments are implemented by PyTorch [39] and

runs on RTX-3090TI.

D. Further exploration on backgrounds
Motivated by the models’ vulnerability against back-

ground changes, especially for those complicated back-
grounds. Apart from randomly picking the backgrounds
from the ImageNet dataset as final backgrounds (ran-
dom bg), we also collect background templates with abun-
dant textures, including leopard, eight diagrams, checker
and stripe to explore the performance on out-of-distribution



Table 6. Evaluations under different object sizes.

Models Ori Full 0.10 0.08 0.05 0.05-rp rd
Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 89.98% 2.71% 85.44% 7.25% 82.18% 10.51% 71.43% 21.26% 66.23% 26.46% 67.57% 25.12%
DenseNet121 92.10% 88.60% 3.50% 85.10% 7.00% 81.42% 10.68% 70.55% 21.55% 65.57% 26.53% 68.46% 23.64%

EF-B0 92.85% 89.82% 3.03% 84.85% 8.00% 81.28% 11.57% 69.57% 23.28% 64.94% 27.91% 73.74% 19.11%
ResNest50 95.38% 92.85% 2.53% 90.11% 5.27% 87.37% 8.01% 77.35% 18.03% 74.01% 21.37% 78.06% 17.32%

ViT-S 94.14% 93.34% 0.80% 88.77% 5.37% 85.55% 8.59% 76.77% 17.37% 71.28% 22.86% 77.01% 17.13%
Swin-S 96.21% 94.94% 1.27% 92.00% 4.21% 89.92% 6.29% 82.05% 14.16% 78.86% 17.35% 82.79% 13.42%

ConvNeXt-T 96.07% 94.32% 1.75% 92.79% 3.28% 90.89% 5.18% 83.31% 12.76% 80.36% 15.71% 80.29% 15.78%
RN101 94.00% 91.43% 2.57% 87.19% 6.81% 83.88% 10.12% 73.35% 20.65% 68.15% 25.85% 69.58% 24.42%

DenseNet169 92.37% 90.12% 2.25% 85.47% 6.90% 81.96% 10.41% 71.78% 20.59% 67.44% 24.93% 71.69% 20.68%
EF-B3 94.97% 93.61% 1.36% 88.17% 6.80% 84.81% 10.16% 73.61% 21.36% 69.99% 24.98% 77.73% 17.24%

ResNest101 95.54% 94.19% 1.35% 91.57% 3.97% 89.01% 6.53% 80.10% 15.44% 76.43% 19.11% 81.23% 14.31%
ViT-B 95.38% 94.76% 0.62% 91.38% 4.00% 89.08% 6.30% 80.87% 14.51% 76.56% 18.82% 80.43% 14.95%

Swin-B 95.96% 94.97% 0.99% 92.80% 3.16% 90.92% 5.04% 83.62% 12.34% 80.58% 15.38% 83.36% 12.60%
ConvNeXt-B 96.42% 95.43% 0.99% 94.17% 2.25% 93.06% 3.36% 86.95% 9.47% 84.02% 12.40% 83.41% 13.01%

Table 7. Evaluations with different robust models under different object sizes.

Models Ori Full 0.10 0.08 0.05 0.05-rp rd
Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 89.98% 2.71% 85.44% 7.25% 82.18% 10.51% 71.43% 21.26% 66.23% 26.46% 67.57% 25.12%
RN50-A 81.96% 77.09% 4.87% 72.34% 9.62% 68.02% 13.94% 56.45% 25.51% 49.45% 32.51% 50.00% 31.96%

RN50-SIN 91.57% 89.89% 1.68% 83.27% 8.30% 78.97% 12.60% 67.34% 24.23% 62.41% 29.16% 64.33% 27.24%
RN50-debiasd 93.34% 91.36% 1.98% 87.81% 5.53% 84.58% 8.76% 74.07% 19.27% 69.33% 24.01% 68.37% 24.97%
RN50-Augmix 93.50% 91.89% 1.61% 87.10% 6.40% 83.53% 9.97% 72.08% 21.42% 66.36% 27.14% 71.08% 22.42%

RN50-ANT 91.87% 90.30% 1.57% 84.75% 7.12% 81.25% 10.62% 70.38% 21.49% 65.21% 26.66% 66.64% 25.23%
RN50-DeepAugment 92.88% 91.52% 1.36% 85.61% 7.27% 82.26% 10.62% 71.60% 21.28% 66.60% 26.28% 71.59% 21.29%

RN50-T 94.55% 92.44% 2.11% 89.81% 4.74% 86.72% 7.83% 77.09% 17.46% 73.43% 21.12% 74.95% 19.60%

backgrounds. The evaluation results are shown in Table 12.
It can be observed that the background changes can lead to
a 13.34% accuracy drop. When the background is set to be
a leopard or other images, the dropped accuracy can even
reach 35.52%. Sometimes the robust models even show
worse robustness. For example, when the background is
eight diagrams, all the robust models show worse results
than the vanilla RN50, which is quite unexpected. To com-
prehend the behaviour behind it, we visualize the heat maps
of the different models in Figure 6. An interesting find-
ing is that deep models tend to make decisions with depen-
dency on the backgrounds, especially when the background
is complicated and can attract some attention. For example,
when the background is the eight diagrams, the SIN takes
the goldfish as a dishwasher. We suspect it has mistaken the
background as dishes. In the same fashion, the Debiased
model and ANT take the ‘sea slug’ with eight diagrams as
a ‘shopping basket’, which seems to make sense since the
‘sea slug’ looks like a vegetable.

E. Further discussion on the distribution
In this paper, our effort aims to give an editable

image tool that can edit the object’s attribute in the
given image while maintaining it in the original distri-
bution for model debugging. Thus, we choose the out-

of-distribution (OOD) detection methods including En-
ergy [34] and GradNorm [27] following DRA [55] as the
evaluation methods to find out whether our editing tool
will move the edited image out of its original distribution.
In contrast to FID which indicates the divergence of two
datasets, the OOD detection is used to indicate the extent of
the deviance of a single input image from the in-distribution
dataset.

Covariate shift adaptation(a.k.a batch-norm adaptation,
BNA) is a way for improving robustness against common
corruptions [44]. Thus, it can help to get a top-1 accuracy
performance boost in OOD data. One can easily find out if
the provided dataset is OOD by checking whether the BNA
can get a performance boost on its data. We have tested
the full adaptation results using BNA on ResNet50. In con-
trast to the promotion on other out-of-distribution dataset,
we find that this operation induces little changes to top-1 ac-
curacy on both ImageNet validation set (0.7615 ! 0.7613)
and our ImageNet-E (0.7934 ! 0.7933 under � = 20,
0.6521 ! 0.6514 under random position scenario, mean
accuracy of 5 runs). This similar tendency implies that our
ImageNet-E shares a similar property with ImageNet.



Vanilla Debiased

Figure 10. Dropped accuracy (%) in each class. Classes whose number of images is less than 15 or dropped accuracy is zero are removed.

Table 8. Evaluations with more data.

Models Original Background Size-0.05 Models Original Background Size-0.05
Top-1 Top-1 DA Top-1 DA Top-1 Top-1 DA Top-1 DA

DenseNet121 86.60% 74.73% 11.87% 61.48% 25.12% DenseNet169 87.66% 76.26% 11.40% 63.57% 24.09%
RN50 88.12% 71.64% 16.48% 63.13% 24.99% RN101 89.52% 75.33% 14.19% 65.11% 24.41%
EF-B0 88.54% 75.64% 12.90% 62.16% 26.38% EF-B3 92.12% 80.81% 11.31% 66.18% 25.96%

ResNest50 92.12% 80.61% 11.51% 70.05% 22.07% ResNest101 92.78% 83.46% 9.32% 72.67% 20.11%
ViT-S 92.15% 78.94% 13.21% 69.30% 22.85% ViT-B 94.12% 83.04% 11.08% 75.65% 18.47%

Swin-S 93.11% 82.98% 10.13% 75.36% 17.75% Swin-B 93.18% 84.11% 9.07% 76.99% 16.19%
ConvNeXt-T 92.75% 84.00% 9.43% 76.41% 16.34% ConvNeXt-B 94.05% 86.41% 7.64% 80.34% 13.71%

F. Further evaluation on more state-of-the-art
models

To provide evaluations on more state-of-the-art models,
we step further to evaluate the CLIP [40] and EfficientNet-
L2-Noisy-Student [51]. The average dropped accuracy in
terms of different models can be found in Figure 12. CLIP
shows a good robustness to out-of-distribution data [31].
Therefore, to find out whether the CLIP can also show a
good robustness against attribute editing, we evaluate the
CLIP model (Backbone ViT-B) with both the zero-shot and
end-to-end finetuned version. To achieve this, we fine-
tune the pretrained CLIP on the ImageNet training dataset
based on prompt-initialized model following [49]. It ac-
quires a 81.2% top-1 accuracy on ImageNet validation set
while it is 68.3% for zero-shot version. The evaluation on
ImageNet-E is shown in Table 11 and Table 13. Though
previous studies have shown that the zero-shot CLIP model
exhibits better out-of-distribution robustness than the fine-
tuned ones, the finetuned CLIP shows better attribute ro-
bustness on ImageNet-E, as shown in Table 11 and Ta-
ble 13. The tendency on ImageNet-E is the same with Im-

ageNet (IN) validation set and ImageNet-V2 (IN-V2). This
implies that the ImageNet-E shows a better proximity to Im-
ageNet than other out-of-distribution benchmarks such as
ImageNet-C (IN-C), ImageNet-A (IN-A). Another finding
is that the CLIP model fails to show better robustness than
ViT-B while they share the same architectures. We suspect
that this is caused by that CLIP may have spared some ca-
pacity for out-of-distribution robustness. As the network
gets larger, its attribute robustness gets better.

While EfficientNet-L2-Noisy-Student is one of the top
models on ImageNet-A benchmark [51], it also shows su-
periority on ImageNet-E. To delve into the reason behind
this, we test EfficientNet-L2-Noisy-Student-475 (EF-L2-
NT-475) and EfficientNet-B0-Noisy-Student (EF-B0-NT).
The EF-L2-NT-475 differs from EF-L2-NT in terms of in-
put size, which former is 475 while it is 800 for the latter.
It can be found that the input size can induce little improve-
ment to the attribute robustness. In contrast, larger networks
can benefit a lot to attribute robustness, which is consistent
with the finding in Section 5.1.

Evaluations on 91 state-of-the-art models can be found
in Figure 13. All the evaluated models in this figure are all
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Figure 11. The heat map comparisons between original images and edited ones.

Table 9. Ablation study of the self-attention-like architecture.

Models Ori Background changes Size changes Position Direction Avg.Inver � = �20 � = 20 � = 20-Adv Random Full 0.1 0.08 0.05 rp rd
R50d 93.77% 1.23% 4.80% 6.48% 19.39% 8.28% 2.82% 4.36% 7.07% 16.95% 20.49% 19.31% 11.00%
ViT-S 94.74% 1.66% 7.32% 10.64% 32.17% 14.39% 1.22% 7.10% 10.64% 20.29% 25.08% 17.22% 14.61%

R50-hybrid 95.40% 1.04% 5.64% 7.16% 21.54% 9.19% 1.37% 3.53% 5.92% 13.92% 17.23% 14.12% 9.96%

Figure 12. The average accuracy drop of different models. The
x-axis is the model’s top-1 accuracy on ImageNet.

provided by the timm library, except for the MoCo-V3-FT
and CLIP-FT, which are finetuned by us.

G. Failure cases of generated images
The failure cases of generated images are shown in Fig-

ure 15. The diffusion model fails to generate high-quality
person images. Though the object is reserved, the whole im-
age looks quite wired. Therefore, we only keep the animal
classes, resulting a compact set of ImageNet-E. However,
extensive evaluations to 919 in Section C.3 have witnessed
a same conclusion with evaluations on 373 classes. This
implies that using our ImageNet-E can already reflect the
model robustness against object attribute changes.

H. Related literature to robustness enhance-
ments

Adversarial training. [43] focus on adversarially ro-
bust ImageNet classifiers and show that they yield improved
accuracy on a standard suite of downstream classification
tasks. It provides a strong baseline for adversarial training.
Therefore, we choose their officially released adversarially
trained models3 as the evaluation model. Models with dif-
ferent architectures are adopted here4.

SIN [14] provides evidence that machine recognition to-

3https://github.com/microsoft/robust-models-transfer
4https://github.com/alibaba/easyrobust



Table 10. Ablation study of the self-supervised models. All the compared models are end-to-end finetuned on ImageNet except for ViT-B,
which is supervised trained from the early start.

Models Ori Background changes Size changes Position Direction Avg.Inver � = �20 � = 20 � = 20-Adv Random Full 0.1 0.08 0.05 rp rd
ViT-B 95.38% 0.83% 5.32% 8.43% 26.60% 10.98% 0.62% 4.00% 6.30% 14.51% 18.82% 14.95% 11.05%

CLIP finetune 93.68% 2.17% 9.82% 11.83% 38.33% 18.19% 9.06% 9.25% 12.67% 23.32% 28.56% 22.00% 18.30%
MoCo-v3 95.70% 0.55% 4.91% 7.33% 24.33% 9.92% 0.92% 3.76% 5.62% 13.61% 17.85% 15.20% 10.35%

MAE-ViT-B 96.12% 0.78% 4.77% 6.21% 21.09% 8.18% 0.78% 3.01% 4.86% 12.10% 15.47% 14.00% 9.05%
SimMIM 96.14% 0.75% 5.13% 6.76% 23.58% 9.33% 0.97% 3.22% 5.33% 13.18% 17.12% 13.62% 9.82%

Standard supervised CNNs
Supervised ViTs

Self-Supervised ViTs Data-rich models
Figure 13. The top-1 accuracy performance under different editing scenarios of 91 state-of-the-art models.

Table 11. Evaluations on different robustness benchmarks. All
results are top-1 accuracies(%) on corresponding datasets except
for ImageNet-C, which is mCE (mean Corruption Error). Higher
top-1 accuracy and lower mCE indicate better performance.

Models IN IN-V2 IN-A IN-C IN-R IN-Sketch IN-E
CLIP-zero-shot 68.3 61.9 50.1 43.1 77.6 48.3 62.1

CLIP-FT 81.2 70.7 35.3 47..9 65.0 44.9 77.2

day overly relies on object textures rather than global object
shapes, as commonly assumed. It demonstrates the advan-
tages of a shape-based representation for robust inference
(using their Stylized-ImageNet dataset to induce such a rep-
resentation in neural networks)

Debiased [32] shows that convolutional neural networks
are often biased towards either texture or shape, depend-
ing on the training dataset, and such bias degenerates model
performance. Motivated by this observation, it develops a
simple algorithm for shape-texture Debiased learning. To
prevent models from exclusively attending to a single cue
in representation learning, it augments training data with
images with conflicting shape and texture information (e.g.,
an image of chimpanzee shape but with lemon texture) and
provides the corresponding supervision from shape and tex-
ture simultaneously. It empirically demonstrates the advan-

tages of the shape-texture Debiased neural network training
on boosting both accuracy and robustness.

Augmix [23] focuses on the robustness improvement to
unforeseen data shifts encountered during deployment. It
proposes a data processing technique named Augmix that
helps to improve robustness and uncertainty measures on
challenging image classification benchmarks.

ANT [41] demonstrates that a simple but properly tuned
training with additive Gaussian and Speckle noise general-
izes surprisingly well to unseen corruptions, easily reaching
the previous state of the art on the corruption benchmark
ImageNet-C and on MNIST-C.

DeepAugment [21]. Motivated by the observation that
using larger models and artificial data augmentations can
improve robustness on real-world distribution shifts, con-
trary to claims in prior work. It introduces a new data
augmentation method named DeepAugment, which uses
image-to-image neural networks for data augmentation. It
improves robustness on their newly introduced ImageNet-R
benchmark and can also be combined with other augmen-
tation methods to outperform a model pretrained on 1000×
more labeled data.

There are some more tables and figures in the next pages.



Table 12. Evaluation of images generated with different backgrounds.

Models Original Random bg Leopard Eight diagrams Checker Stripe
Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 79.35% 13.34% 57.17% 35.52% 64.32% 28.37% 65.13% 27.56% 62.90% 29.79%
RN50-A 81.96% 66.71% 15.25% 25.05% 56.91% 37.21% 44.75% 32.47% 49.49% 46.96% 35.00%

RN50-SIN 91.57% 77.99% 13.58% 62.74% 28.83% 48.74% 42.83% 51.15% 40.42% 52.65% 38.92%
RN50-debiasd 93.34% 81.22% 12.12% 68.58% 24.76% 62.68% 30.66% 67.10% 26.24% 63.16% 30.18%
RN50-Augmix 93.50% 80.56% 12.94% 57.35% 36.15% 56.20% 37.30% 68.78% 24.72% 65.68% 27.82%

RN50-ANT 91.87% 76.51% 15.36% 58.11% 33.76% 59.04% 32.83% 51.91% 39.96% 54.69% 37.18%
RN50-DeepAugment 92.88% 79.56% 13.32% 62.83% 30.05% 57.71% 35.17% 59.46% 33.42% 61.80% 31.08%

R50-T 94.55% 84.13% 10.42% 72.93% 21.62% 73.98% 20.57% 79.42% 15.13% 76.43% 18.12%

Original

Random

Leopard

Eight diagrams

Checker

Stripe

Vanilla SIN Debiased Augmix ANT DeepAugment Vanilla SIN Debiased Augmix ANT DeepAugment

Figure 14. Heat maps under different backgrounds.

Table 13. More evaluations on state-of-the-art models including CLIP and EfficientNet-L2-Noisy-Student.

Models Ori Background changes Size changes Position Direction Avg.Inver � = �20 � = 20 � = 20-Adv Random Full 0.1 0.08 0.05 rp rd
ViT-B/16 95.38% 0.83% 5.32% 8.43% 26.60% 10.98% 0.62% 4.00% 6.30% 14.51% 18.82% 14.95% 11.05%

Zero-shot
CLIP RN50 72.38% 6.03% 11.64% 16.72% 35.07% 21.82% 8.78% 14.39% 17.69% 26.48% 29.79% 25.31% 20.77%

CLIP RN101 73.35% 4.51% 10.77% 14.42% 33.42% 19.63% 6.39% 14.53% 18.19% 26.58% 30.08% 24.51% 19.85%
CLIP RN50x4 77.18% 4.64% 10.44% 13.27% 31.39% 18.51% 7.46% 12.37% 15.66% 24.23% 27.19% 24.25% 18.48%
CLIP RN50x16 82.10% 4.39% 10.10% 12.41% 27.14% 16.62% 6.62% 11.10% 13.53% 22.09% 25.27% 23.13% 16.80%
CLIP RN50x64 85.66% 4.77% 8.89% 10.79% 23.75% 13.44% 6.39% 9.20% 11.92% 19.17% 21.62% 20.57% 14.57%
CLIP ViT-B/32 74.08% 5.55% 13.24% 18.64% 43.26% 26.39% 2.99% 15.59% 19.74% 29.05% 33.37% 24.89% 22.72%
CLIP ViT-B/16 80.01% 4.88% 11.56% 15.28% 36.14% 20.09% 4.88% 12.67% 15.77% 25.31% 28.87% 21.57% 19.21%
CLIP ViT-L/14 87.61% 4.35% 11.04% 14.46% 33.69% 18.35% 1.81% 11.67% 15.09% 23.66% 27.19% 18.05% 17.50%

CLIP ViT-L/14-336 88.01% 3.16% 9.07% 12.25% 29.69% 16.08% 3.16% 9.20% 11.78% 19.94% 22.89% 16.15% 15.02%
CLIP ViT-L/14-336 88.01% 3.16% 9.07% 12.25% 29.69% 16.08% 3.16% 9.20% 11.78% 19.94% 22.89% 16.15% 15.02%

Finetune
CLIP ViT-B/16-FT 93.68% 2.17% 9.82% 11.83% 38.33% 18.19% 4.66% 9.25% 12.67% 23.32% 28.56% 22.00% 17.86%

CLIP ViT-L/14-336-FT 96.97% 1.29% 5.16% 6.18% 19.93% 8.09% 1.29% 3.47% 4.90% 10.98% 13.74% 10.96% 8.47%
EF-B0 92.85% 1.07% 7.10% 10.71% 34.88% 15.64% 3.03% 8.00% 11.57% 23.28% 27.91% 19.11% 16.12%

EF-B0-NT 94.30% 1.97% 8.43% 10.51% 34.93% 15.99% 1.79% 7.91% 11.50% 22.96% 27.62% 19.07% 16.07%
EF-B7 97.10% 1.80% 6.37% 7.20% 23.36% 10.78% 1.65% 4.16% 6.25% 14.13% 17.12% 10.56% 10.16%

EF-B7-NT 97.38% 1.30% 5.26% 6.10% 19.96% 9.15% 0.55% 3.31% 4.75% 10.67% 12.87% 7.98% 8.06%
EF-L2-NT-475 97.84% 1.08% 3.60% 4.51% 14.88% 7.14% 0.51% 2.21% 2.71% 5.50% 7.35% 4.58% 5.30%

EF-L2-NT 97.63% 1.26% 3.50% 4.06% 12.73% 6.90% 0.71% 2.27% 2.79% 5.01% 6.03% 4.55% 4.85%



Figure 15. The failure cases of attribute editing.
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