
Supplementary for Paper: Improving Vision-and-Language Navigation by
Generating Future-View Image Semantics

Jialu Li Mohit Bansal
UNC Chapel Hill

{jialuli, mbansal}@cs.unc.edu

1. Overview
In this supplementary, we provide the following:

• Detailed description of the architecture of the baseline
method we use in Sec. 2.

• Detailed description of the pre-training tasks used in
the baseline method in Sec. 3, and more implementa-
tion details in Sec. 4.

• Performance of our method on R4R and RxR valida-
tion unseen set in Sec. 5.

• Proof that demonstrates weighted patch probability
could learn a better optimal value than mean patch
probability in Sec. 6.

• More examples of the future views generated by our
APIG head in Sec. 7, and quantitative analysis of the
semantics underlying our generated tokens in Sec. 8.

2. HAMT Model Architecture
HAMT [1] utilizes a transformer-based architecture to

encode the instructions, navigation history, and current step
observation. Specifically, the instructions are encoded with
a BERT architecture.

As the navigation history is a sequence of panorama ob-
servations, HAMT encodes the navigation history with a hi-
erarchical architecture. It first uses a panorama encoder to
encode panorama into view representation, and uses mul-
tiple transformer layers as the temporal encoder to encode
the observations on the trajectory. Formally, given the en-
coded history observation vi, which is the output of the
panorama encoder, the output of the temporal encoder is
hi = LN(Wtvi) + LN(Waai) + ES

i + ET
2 , where ai is

the action embedding at step i, ES
i is the step encoding, and

ET
2 is the token type encoding which indicates the input is

history views.
The current step observation is represented as 36 dis-

cretized views. Each view is passed through the trans-
former encoder to learn the view representation: oi =

LN(Wov
o
i) + LN(W o

aa
o
i) + EO

i + ET
1 , where voi is the

encoding of view i, aoi is the action embedding for view i,
EO

i is the embedding indicating whether the current view is
navigable, and ET

1 is the token type encoding which indi-
cates the input is current step observation.

The agent predicts the next step by comparing the simi-
larity between the observation encoding oi and the <CLS>
token which contains instruction-trajectory information.

More implementation details can be found in [1].

3. Pre-training Tasks in HAMT

In this section, we describe the six pre-training tasks we
adopted from [1]. Specifically, the six tasks are Masked
Language Modeling (MLM), Masked Region Modeling
(MRM), Instruction Trajectory Matching (ITM), Single-
step Action Prediction/Regression (SAP/SAR), and Spatial
Relationship Prediction (SPREL).

In Masked Language Modeling, we randomly masked
out 15% of the words in the instructions, and predict the
masked words given surrounding words and the full trajec-
tory, which improves agents’ language understanding. We
optimize the negative log-likelihood of the original words:
LMLM = −logp(wi|Ilang\i, Ivisual), where Ilang\i is the
language input without masked words wi and Ivisual is the
visual input.

In Masked Region Modeling, the agent learns to predict
the objects in the masked views in the trajectory. The target
is the object detection probability pi predicted by an im-
age classification model pre-trained on ImageNet. We op-
timize a KL-divergence between the target probability and
predicted probability: LMRM = −pilogp̂i, where p̂i is the
predicted probability.

In Instruction Trajectory Matching, the agent learns
the alignment between the language instructions and
the environment by picking the correct instruction-
trajectory pairs from one positive pair and four negative
pairs. The four negative pairs are created by randomly
sampling two trajectories from the same batch, and
shuffling the order of views in the correct trajectory.

1

���������

0RGHO

5DQGRP

0RGHO

5DQGRP

2ULJLQDO�,PDJH

Figure 1. Qualitative analysis of images generated with our agent.
Given 90%/ 80%/ 70% ground truth tokens, the rest tokens pre-
dicted by our model contain closer semantic information com-
pared with randomly filled tokens.

The agent optimizes a noisy contrastive loss: LITM =

−log
exp(fITM (hlang∗hvisual))

exp(fITM (hlang∗hvisual))+
∑4 exp(fITM (hlang∗hneg

visual))
,

where hlang and hvisual are the outputs of the <CLS>
token of the instructions and the trajectories separately.

In Single-step Action Prediction and Single-step Action
Regression, the agent needs to select the next step from a
set of candidates. Specifically, the agent optimizes a nega-
tive log probability of the target view action in Single-step
Action Prediction, and predicts the heading and elevation of
the target view action by optimizing the L2 loss.

In Spatial Relationship Prediction, the agent learns to
predict the relative spatial position of two views in a
panorama. Specifically, it optimizes a L2 loss between the
predicted heading and elevation difference and ground truth
heading and elevation difference between two views.

More implementation details can be found in [1].

4. Implementation Details

We adopt the model architecture from [1]. For the image
tokenizer, the input image size is 224, and the patch size is
16. We set 1.0 for γ and 0.5 for λ in dynamic codebook
selection, and |S| to be 1000 for both codebook selection
methods. In pre-training, the ratio to select tasks is set to
be 3 for MTM and 1 for others. The mask ratio r is 0.5
for MTM and u is 0.3 for MPM. In fine-tuning, LAT is
added to the IL loss with ratio 1. The ratio to combine IL
and RL is 0.15 when adding LAT and 0.2 otherwise. We
use weighted patch probability with block-wise sampling
for Room-to-Room dataset and base weighted patch prob-
ability for CVDN dataset. Other hyperparameters are the
same as in [1] for fair comparison. For training time, our
model takes 30 hours to converge on 2 NIVIDIA A6000
GPU, while HAMT full model takes 20 hours training on

Model R4R RxR
Val Unseen Val Unseen

SR↑ nDTW↑ sDTW↑ CLS↑ SR↑ nDTW↑ sDTW↑
HAMT [1] 44.6 50.3 31.8 57.7 56.5 63.1 48.3

Ours 45.8 52.9 33.6 59.1 60.0 65.3 51.4

Table 1. Comparison with state-of-the-art agents on R4R and RxR
validation unseen set.

20 NVIDIA V100 GPUs in addition to initial pre-training
for 1 day on 4 NVIDIA Tesla. For model parameters up-
dated during pre-training, our model updates 191M param-
eters while HAMT full model updates 260M, saving 27%
parameters.

5. Performance on R4R and RxR dataset

In this section, we show our agents’ performance on R4R
and RxR dataset. As shown in Table 1, our model sur-
passes the HAMT full model by 2.6% in nDTW and 1.8%
in sDTW on R4R validation unseen set. Besides, we show
that our model achieves significantly better performance on
RxR unseen set, improving the HAMT method by 2.1% in
nDTW and 3.1% in sDTW.

6. Weighted Patch Probability Proof

In weighted patch probability calculation, we represent
image semantics generation probability powik as:

powik =

N∑
j=1

wjpijk (1)

where wj is a randomly sampled weight for patch j, and∑N
j=1 wj = 1.
During training, we randomly sample {wj}Nj=1 for

each example, and minimize the differences between∑N
j=1 wjpijk and predicted p̂owik . We hypothesize that the

agent learns to predict p̂owik by predicting
∑N

j=1 wj p̂ijk as
we conditioned the prediction based on sampled weights
{wj}Nj=1.

We want to reach the optimal where:

powik = p̂owik (2)

N∑
j=1

wjpijk =

N∑
j=1

wj p̂ijk (3)

Since we randomly sample {wj}Nj=1 during training, this
guarantees that for every patch j in the image vi, pijk =

p̂ijk, otherwise ∃{wj}Nj=1 that makes
∑N

j=1 wjpijk ̸=∑N
j=1 wj p̂ijk.

7. Future View Generation Examples
We demonstrate that our model could reasonably gen-

erate future semantics and reconstruct future images with
more examples. As shown in Figure 1, our generated image
could almost reconstruct the doors and the overall layout
of the room when given 70% of the ground truth tokens.
In comparison, filling the 30% patches with random tokens
will produce distorted images which are hard to infer how
does the original images look like.

8. Analysis of Generated Semantics
In this section, we compare the generated semantics with

the ground truth semantics quantitatively to demonstrate
that the semantic information underlying them is similar.
Specifically, we represent the semantics of each visual to-
ken as the output of the first embedding layer in the dVAE
decoder (which maps each token to a 128 dimension repre-
sentation space). We calculate the distance between gener-
ated semantics and ground truth semantics, and compare it
with the distance between the ground truth semantics and all
other tokens in the vocabulary (i.e., the distance between the
ground truth token and other 8191 tokens for each patch).
We normalize each semantic representation and use l2-norm
as the distance. Our method has a distance of 0.95, while the
baseline is 1.31. This shows that the distance between our
generated semantics and ground truth semantics is closer.

References
[1] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan

Laptev. History aware multimodal transformer for vision-and-
language navigation. Advances in Neural Information Pro-
cessing Systems, 34, 2021. 1, 2

	. Overview
	. HAMT Model Architecture
	. Pre-training Tasks in HAMT
	. Implementation Details
	. Performance on R4R and RxR dataset
	. Weighted Patch Probability Proof
	. Future View Generation Examples
	. Analysis of Generated Semantics

