
Supplementary Document for
Inverse Rendering of Translucent Objects using Physical and Neural Renderers

A. Introduction
In this document, we provide the supplementary mate-

rial of the proposed model. In Section B, we demonstrate
the additional experiment results. In Section C, we intro-
duce the proposed dataset. In Section D, we introduce our
scene representation. Section E shows the training details
of the proposed model. Section F demonstrates our network
structure.

B. Additional Results
B.1. Real-world objects decomposition

We demonstrate the additional results of real-world
translucent objects in Figure 1. From the figure, we can ob-
seve that our model estimates reasonable subsurface scat-
tering parameters (d) and the re-rendered images (i) look
similar to the original input ones (a).

B.2. Parameter space exploring

In this section, we explore how well the neural renderer
learned the subsurface scattering parameter space by two
experiments. The first one is the linear interpolation of vol-
umetric albedo α. Given a target volumetric albedo and an
original one, we linearly interpolate them and input to our
neural renderer. Figure 2 shows that the generated images
are similar to their GTs. Second, we use the same method
to edit the extinction coefficient σt from a extremely large
value to a small value. We demonstrate the results in Figure
3.

B.3. Relighting of surface reflectance

Although relighting is not one of our target applications,
it is easy to understand how well the normal and depth
are estimated by showing the results under novel illumina-
tion coditions. We demonstrate them in Figure 4. It can
be observed that although our model fails to capture some
high frequency details of surface normals, it achieves over-
all good performance.

B.4. Comparison with the existing works

We compare our model with a surface reflectance only
method that also uses a two-shot setup proposed by Boss et

al. [1]. They use a novel stage-wise neural network for the
shape and SVBRDF estimation. However, if we compare
our model with the pure surface reflectance model, a prob-
lem arises. For a fair and equitable comparison, all mod-
els’ training and testing data must be the same. However,
training their model requires the GT value of diffuse albedo,
which is not a part of the translucent object parameters. So
we choose to use their own dataset to train the model and
not compare diffuse albedo during testing. We illustrate the
results of visual comparison of real-world translucent ob-
jects in Figure 5. Considering we do not have the same
problem setting as their work, the result here is just for user
reference.

C. Datasets
Measuring a large number of real-world translucent ob-

jects that include shape, surface reflectance, and subsurface
scattering parameters is time-consuming. However, train-
ing data is an indispensable part of deep neural networks.
Thus, we created a large-scale synthetic dataset by photo-
realistic rendering. In the following few subsections, we
discuss how we prepared the assets for rendering, including
3D objects, BSDF maps, subsurface scattering parameters,
and illumination.

3D Objects Some existing works [1, 7, 9] use the Do-
main Randomized method to synthesize 3D objects by ran-
domly assembling some simple shapes such as spheres,
cylinders, cones, etc. For the shape complexity and diver-
sity of our dataset, we collected human-created 3D objects
from ShapeNet [2] and some other public resources. How-
ever, some objects in the ShapeNet have flipped surface nor-
mal, which can result in entirely black pixels when inter-
secting with light. We used a script to delete these objects,
and finally, 5,847 3D objects were retained. All objects
were scaled into a cube with a length of 50cm and placed
at the origin and were randomly rotated, scaled, and trans-
lated during the rendering process. We use 5,000 objects for
training and 857 for testing.

Roughness and auxiliary normal maps To make a
meaningful surface reflectance pattern, we collected a large
number of human-created surface reflectance maps from
several open-source websites. Each of them contains a nor-



mal auxiliary map and a roughness map. We use a “smart
uv mapping” function of Blender [5] to apply the collected
roughness map and normal maps to objects. The normal
map was applied on the original 3D object to modify its
surface normal that makes more realistic surface. Before
being applied to the objects, all roughness maps and nor-
mal maps were randomly resized. In the end, we achieved
2,745 surface reflectance maps and used 2,470 for training
and 275 for testing.

IoR In order to reduce the ambiguity problem of inverse
rendering, we set the index of refraction (IoR) to a con-
stant (1.5046) and do not estimate it. We choose this value
because many of our world’s popular materials like glass
(1.5046), amber (1.55), and polyethylene (1.49) have simi-
lar IORs.

Subsurface scattering parameters Follow the previ-
ous work [3], we randomly sampled the subsurface scat-
tering parameters from a uniform distribution with ex-
tinction coefficient σt ∈ [0, 32], volumetric albedo α ∈
[0.3, 0.95], and Henyey-Greenstein phase function param-
eter g ∈ [0, 0.9].

Illumination To mimic the completed light condition in
our real world, we choose environment maps as the light
source. We used the Laval Indoor HDR dataset [4], which
consists of 2,357 high-resolution indoor panoramas. Dur-
ing rendering, the pitch and roll were fixed, and they only
rotated around the yaw axis. We computed a 3×9 Spherical
Harmonics coefficients for each environment map to super-
vise our model. In total, 1500 environment maps were used
for training, and 857 were used for testing.

Initially, we were going to use a point light to simulate
the flashlight. However, for some very smooth objects, we
observed severe noise when using a point light. Therefore,
we used a tiny sphere area light with a radius of 10cm in-
stead of a point light. The area light is placed 10cm behind
the camera. Taking into account the different flashlight in-
tensity of various devices in the real world, we also used a
random radiance between 35 to 75 W ·m−2sr−1.

Synthetic dataset For each scene, we used Mitsuba2 [8]
to render five images: flash image, no-flash image, and three
altered images. Each scene contains a randomly selected
object, normal map, roughness map, environment map, and
subsurface scattering parameters. The camera is placed
70cm away from the origin on the positive z-axis and looks
at the origin. For the flash image, we used a small area light
source behind the viewpoint to simulate the camera flash-
light. For the no-flash image, we remove the small area
light source and slightly change the camera’s look-at direc-
tion to simulate the camera shake. For the three altered im-
ages, the subsurface scattering parameters were edited from
those of the original flash image. In addition, we also ren-
dered the ground truth depth, normal, roughness, and binary
masks for the intermediate supervision. We obtained a total

of 100,000 training scenes and 17,140 test scenes.
Real-world dataset For a more comprehensive test of

our model, we also constructed a real-world dataset con-
sisting of several common translucent objects. We took a
flash photo and a no-flash photo with a smartphone camera.
We manually created a binary mask for each object.

D. Scene Representation

In this section, we introduce the scene representation of
our model. Figure 6 illustrates the differences between our
scene representation and the existing works. The simplifica-
tion of the scene representation can greatly reduce the prob-
lem of ambiguity, thereby reducing the difficulty of param-
eter estimation. However, at the same time, the scenarios in
which the model can be applied are also reduced. For exam-
ple, if we assume a diffuse reflectance like (a) in Figure 6,
we can only solve the inverse rendering problem of objects
like paper, rubber, etc. We make the first attempt at an in-
verse rendering problem involving both surface reflectance
and subsurface scattering. Most translucent objects in our
world like wax, plastic, and jade satisfy this scene represen-
tation.

For the surface part, we use a microfacet BSDF model
proposed by [10]. Let p be a point at the object surface, the
outgoing light radiance L(wo) of direction wo at point p is
defined by:

L(wo) =∫
Ω

L(wi)fr(wi, wo, R(p), N(p))max(wi ·N(p), 0) dwi+∫
Ω′

L(w
′

i)ft(w
′

i, wo, R(p), N(p))max(w
′

i ·N(p), 0) dw
′

i,

(1)

where Ω is the hemisphere outside the object surface and
Ω

′
is the hemisphere inside the object. L(wi) stands for

the incident light radiance that comes from outside of the
object and L(w

′

i) is the incident light radiance that comes
from inside of the object. fr and ft are the reflectance term
and transmission term of the microfacet BSDF [10] respec-
tively. R is the roughness map and N is the surface normal
map. The radiance L(w

′

i) is the result of multiple scattering
through the volume before going out of the surface at p. We
use the Radiative Transport Equation as our homogeneous
subsurface scattering model:

(w
′

o · ∇)L(w
′

o) =− σtL(w
′

o)

+ σs

∫
S2

L(w
′

i)fp(w
′

i, w
′

o, g) dw
′

i,
(2)

where L(w
′

i) and L(w
′

o) are the incident and outgoing light
radiance respectively. The integral domain S2 is a sphere.



σt is the extinction coefficient, σs is the scattering coeffi-
cient. fp is the Henyey-Greenstein phase function, it has
one parameter g which defines whether the scattering is for-
ward (g > 0), backward (g < 0), or isotropic (g = 0):

fp(θ, g) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (3)

where θ is the angle between w
′

i and w
′

o. In the main paper,
we estimate the volumetric albedo α which is defined as:

α = σs/σt. (4)

E. Model Details
We assume that the size of input images is 256 × 256.

All pixels and physical parameters including extinction co-
efficient σt, volumetric albedo α, phase function parame-
ter g, flashlight intensity i are normalized to −1 to 1. The
network parameters are initialized by Normal Initialization
with the mean equal to 0 and variance equal to 0.02. During
the training, we set batch size to 32. We train the model for
20 epochs by using Adam optimizer [6] with β1 = 0.5, β2

= 0.999, and learning rate lr = 0.0002 in the first 10 epochs
and a linear decay in the remaining 10 epochs. We also use
Batch Normalization to stabilize training. For the loss func-
tions, we empirically set the weight of depth LD to 5 and
the others to 1.

F. Network Structure
We illustrate the detailed network structure in this sec-

tion. The estimator contains a encoder and several heads.
We show the structure of the proposed encoder in Table 1,
Normal, Roughness, and Depth head in Table 2, Scatter-
ing and Illumination head in Table 3. Our neural renderer
contains a Surface Encoder, a Scattering Encoder and a De-
coder, we show the structure in Table 5, 4, and 6, respec-
tively.

References
[1] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik Lensch,

and Jan Kautz. Two-shot spatially-varying brdf and shape
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3982–
3991, 2020. 1, 7

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 1

[3] Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and
Ioannis Gkioulekas. Towards learning-based inverse sub-
surface scattering. In 2020 IEEE International Conference

on Computational Photography (ICCP), pages 1–12. IEEE,
2020. 2

[4] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xi-
aohui Shen, Emiliano Gambaretto, Christian Gagné, and
Jean-François Lalonde. Learning to predict indoor illumina-
tion from a single image. arXiv preprint arXiv:1704.00090,
2017. 2

[5] Roland Hess. Blender Foundations: The Essential Guide to
Learning Blender 2.6. Focal Press, 2010. 2

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[7] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan
Sunkavalli, and Manmohan Chandraker. Learning to recon-
struct shape and spatially-varying reflectance from a single
image. ACM Transactions on Graphics (TOG), 37(6):1–11,
2018. 1

[8] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Transactions on Graphics (TOG), 38(6):1–
17, 2019. 2, 5, 7

[9] Shen Sang and Manmohan Chandraker. Single-shot neural
relighting and svbrdf estimation. In European Conference on
Computer Vision, pages 85–101. Springer, 2020. 1

[10] Bruce Walter, Stephen R Marschner, Hongsong Li, and Ken-
neth E Torrance. Microfacet models for refraction through
rough surfaces. Rendering techniques, 2007:18th, 2007. 2



Table 1. Network structure of the proposed encoder. Numbers in the building blocks mean kernel size, number of output channel, and
stride, respectively.

stage building blocks output size

input convolution

7× 7 64 1× 1
BN

ReLU

 H ×W × 64

downsampling convolution 1

3× 3 128 2× 2
BN

ReLU

 H
2 × W

2 × 128

downsampling convolution 2

3× 3 256 2× 2
BN

ReLU

 H
4 × W

4 × 256

resnet blocks


3× 3 256 1× 1

BN
ReLU

3× 3 256 1× 1
BN

ReLU

× 9 H
4 × W

4 × 256

Table 2. Network structure for the Normal, Roughness, and Depth head. Numbers in the building blocks mean kernel size, number of
output channel, and stride, respectively. Output channel C for Normal head is 3, and for Roughness and Depth head is 1.

stage building blocks output size

upsampling convolution 1

3× 3 128 2× 2
BN

ReLU

 H
2 × W

2 × 128

upsampling convolution 2

3× 3 64 2× 2
BN

ReLU

 H ×W × 64

output convolution
[
7× 7 C 1× 1

BN

]
H ×W × C

Table 3. Network structure for the Scattering and Illumination head. Numbers in the building blocks mean kernel size, number of output
channel, and stride, respectively. Output channel C for SSS head is 7, and for Illumination head is 28.

stage building blocks output size

upsampling convolution 1

3× 3 128 2× 2
BN

ReLU

 H
2 × W

2 × 128

upsampling convolution 2

3× 3 64 2× 2
BN

ReLU

 H ×W × 64

output linear
[

C
BN

]
C



Flash No-flash Mask SSS Normal Depth Roughness Reflectance Reconstruct

Input Output

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 1. Inverse rendering results of real-world translucent objects. Our model takes a (a) flash image, a (b) no-flash image, and a (c)
mask as input. Then, it decomposes them into (d) homogeneous subsurface scattering parameters (denoted as SSS in the figure), (e) surface
normal, (f) depth, and (g) spatially-varying roughness. We use the predicted parameters to re-render the image that only considers (h) the
surface reflectance, and (i) both surface reflectance and subsurface scattering. Note that (d) subsurface scattering only contains 7 parameters
(3 for extinction coefficient σt, 3 for volumetric albedo α, 1 for phase function parameter g), we use these parameters to render a sphere
using Mitsuba2 [8] for visualization. Brighter areas in the depth map represent a greater distance, and brighter areas in the roughness map
represent a rougher surface.



Input

GT

Estimated

GT

Estimated
Target

Scattering parameter
interpolated

Figure 2. Linear interpolation results of volumetric albedo α.

Input

High 𝜎!Low 𝜎!

Estimated

GT

Input

High 𝜎!Low 𝜎!

Estimated

GT

Figure 3. Extinction coefficient σt editing results. We edit the σt of the input translucent object and compare the estimated images with
their ground truth at two different levels.



Input

Input

Estimated

GT

Estimated

GT

Relit 1 Relit 2 Relit 3 Relit 4 Relit 5

Figure 4. Surface reflectance under different illumination conditions.

NULL NULL

NULL NULL

NULLNULL

NULL NULL

Mask No-flash Flash

Normal Depth Roughness Diffuse SSS Reconstruct

Mask No-flash Flash

Normal Depth Roughness Diffuse SSS Reconstruct

Mask No-flash Flash

Normal Depth Roughness Diffuse SSS Reconstruct

Mask No-flash Flash

Normal Depth Roughness Diffuse SSS Reconstruct

Ours

Boss et al.

Ours

Boss et al.

Input Input

InputInput

(a) (c)

(b) (d)

Figure 5. Visual comparison with Boss et al. [1]. “Diffuse” in the figure means the surface diffuse albedo. “SSS” denote the subsurface
scattering parameters, we use these parameters to render a sphere using Mitsuba2 [8] for visualization. We select two translucent object
(a) and (b) with low transparency, and two translucent object (c) and (d) with high transparency for qualitative comparison. Boss et al. [1]
method only works well for low transparency when subsurface scattering is close to surface scattering (diffuse reflectance). Meanwhile,
the proposed method works well for both cases.



Diffuse Specular Glossy

wi wi

wo

wo wo wo

wo’

Glossy
&Transparent

wi

Glossy
&Translucent

wo

wo’

wi

(a) (b) (c) (d) (e)

Figure 6. Illustration of different scene representations. The diffuse material (a) assumes that light is reflected uniformly, while the specular
material (b) assumes that the incident light and the outgoing light are symmetrical along the surface normal. The glossy material (c) is
a generalized version of (a) and (b) that assumes the outgoing light follows a distribution. Introducing refraction into (c) results along
a glossy transparent material (d). However, (d) assumes that the light travels in a straight line inside an object. We focus the glossy
translucent material (e) which introduces the multiple bounces and multiple paths inside the object.

Table 4. Network structure for the Scattering Encoder. Numbers in the building blocks mean kernel size, number of output channel, and
stride, respectively.

stage building blocks output size

upsampling convolution 1

4× 4 1024 2× 2
BN

ReLU

 H
128 × W

128 × 1024

upsampling convolution 2

4× 4 512 2× 2
BN

ReLU

 H
64 × W

64 × 512

upsampling convolution 3

4× 4 256 2× 2
BN

ReLU

 H
32 × W

32 × 256

upsampling convolution 4

4× 4 128 2× 2
BN

ReLU

 H
16 × W

16 × 128

upsampling convolution 5

4× 4 64 2× 2
BN

ReLU

 H
8 × W

8 × 64

upsampling convolution 6

4× 4 32 2× 2
BN

ReLU

 H
4 × W

4 × 32



Table 5. Network structure of the Surface Encoder. Numbers in the building blocks mean kernel size, number of output channel, and stride,
respectively.

stage building blocks output size

input convolution

7× 7 64 1× 1
BN

ReLU

 H ×W × 64

downsampling convolution 1

3× 3 128 2× 2
BN

ReLU

 H
2 × W

2 × 128

downsampling convolution 2

3× 3 256 2× 2
BN

ReLU

 H
4 × W

4 × 256

Table 6. Network structure of the Decoder. Numbers in the building blocks mean kernel size, number of output channel, and stride,
respectively.

stage building blocks output size

resnet blocks


3× 3 288 1× 1

BN
ReLU

3× 3 288 1× 1
BN

ReLU

× 9 H
4 × W

4 × 256

upsampling convolution 1

3× 3 128 2× 2
BN

ReLU

 H
2 × W

2 × 128

upsampling convolution 2

3× 3 64 2× 2
BN

ReLU

 H ×W × 64

output convolution
[
7× 7 3 1× 1

BN

]
H ×W × 3


