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Section 1 provides additional details for the pretrain-
ing of our overall framework. The experimental results for
the improvement based on the fine-scale encoder and the
coarse-scale encoder are illustrated in Section 2. Section 3
presents more qualitative examples.

1. Pretraining Details
To pretrain our proposed KERM, we utilize four auxil-

iary tasks. Besides the behavior cloning tasks, i.e., single-
step action prediction (SAP) and object grounding (OG),
the masked language modeling (MLM) and masked region
classification (MRC) are utilized. In the following, these
two tasks are described.

• Masked language modeling (MLM). MLM aims to
learn language representations by masking parts of
the text and predicting them with the contextual in-
formation. The inputs of this task are pairs of lan-
guage instruction L and the corresponding demonstra-
tion path P . As our method utilizes the dual-scale
graph transformer [2] for action prediction, we also
average the embeddings of the fine-scale and coarse-
scale encoders and then a network with two fully-
connected layers is used to predict the target word.
Similar to previous approaches [4, 6], we randomly
mask out the instruction words with a probability of
15%. This task is optimized by minimizing the nega-
tive log-likelihood of the original words:

LMLM = −log(wi|Lm, P )

where Lm is the masked instruction and wi is the label
of the masked word.

• Masked region classification (MRC). MRC requires
the model to predict the semantic labels of masked

view images according to the instruction, unmasked
view images, and the corresponding features in the
topological map. With the same settings in DUET [2],
we randomly mask out view images and objects in
the last observation of the corresponding demonstra-
tion path P with a probability of 15% in the fine-scale
encoder. The visual features for the masked images or
objects are set to zero, while their position embeddings
are preserved. The target semantic labels for view im-
ages are predicted by an image classification model [3]
pretrained on ImageNet, and the labels for the objects
are obtained by an object detector [1] pretrained on the
Visual Genome dataset [5]. Similar to [2], we use a
two-layer fully-connected network to predict the se-
mantic labels of masked visual tokens, and the KL di-
vergence between the predicted and target probability
distribution of each mask token is minimized.

2. Improvements on Different Scales

We also evaluate our proposed method on the settings
with only the fine-scale encoder and the coarse-scale en-
coder separately, as illustrated in Table 1. When only us-
ing the fine-scale encoder to predict the action, our KERM-
fine significantly outperforms DUET-fine. For example, the
Success Rate (SR) is improved from 28.86% to 30.80%.
The trend on the coarse-scale encoder is also the same.
With both the fine-scale and the coarse-scale encoders, our
KERM improves the SR by 3.3%. The results demonstrate
the effectiveness of our method.

Furthermore, we investigate the effect of the strategy that
the agent selects the most likely viewpoint in the navigation
history if the timesteps go above a certain threshold. For
the fair comparison with previous approaches, we apply the
same settings as [2]. Specifically, we set the maximum ac-
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<office type desk>
<clutter with desk>
<desk with a surface>
<indoors office>
<door desk>

<pictured bookcase>
<bookcase next to furniture>
<medium bookcase>
<display hutch hovel>
<wall-mounted bookcase>

<artwork centered over headboard>
<artwork above sofa>
<painting above sofa>
<picture above sofa>
<painting over sofa>

<gray-brown bathroom>
<area in bathroom>
<bathroom to right of kitchen>
<room has faucet>
<wall separating bathroom>

Figure 1. Examples of the retrieved facts for view images. Each view image is cropped into five sub-regions. We show the top-5 facts for
the sub-regions in the blue box.

Table 1. The results of different scales and dual-scale fusion on
the val unseen split of the REVERIE dataset.

OSR^ SR^ SPL^ RGS^ RGSPL^
DUET-fine 30.96 28.86 23.57 20.39 16.64
KERM-fine 34.40 30.80 24.83 21.68 17.56

DUET-coarse 46.44 36.52 25.98 - -
KERM-coarse 46.38 37.38 26.32 - -

DUET 51.07 46.98 33.73 32.15 23.03
KERM 55.21 50.44 35.38 34.51 24.45

Table 2. Statistics of episodes with the maximum action steps.

Val Seen Val Unseen Test
REVERIE 31/1423 (2.18%) 560/3521 (15.90%) 898/6292 (14.27%)

R2R 10/1021 (0.98%) 51/2349 (2.17%) 132/4173 (3.16%)
SOON - 888/2261 (39.27%) 1423/3080 (46.20%)

tion steps as 15 for REVERIE and R2R, and 20 for SOON.
Table 2 illustrates the proportion of the episodes terminated
with the maximum action steps. For example, on the val
unseen split of REVERIE, “560/3521 (15.90%)” represents
that this split has 3521 episodes, and 560 of them are termi-
nated by the criterion of the termination policy (TP), mak-
ing up a proportion of 15.90%. Moreover, Table 3 shows
the results of our KERM and the policy that the agent stops
at the last visited location (i.e., KERM w/o TP). The re-
sults illustrate that the employed TP has small influence on
REVERIE and R2R, while has great influence on SOON.
This is because that the average hop of the trajectories on
SOON is longer with more complex language instructions.

3. More Qualitative Results
Figure 1 illustrates the retrieved facts for view images.

The retrieved facts provide crucial information (e.g., at-
tributes and relationships between objects) which are com-
plementary to visual features. Figure 2 demonstrates the

Table 3. Influence of the termination policy on the val unseen split.

OSR SR SPL RGSPL

REVERIE
KERM 55.21 50.44 35.38 24.45

KERM w/o TP 55.21 49.96 35.29 24.25

R2R
KERM 80.42 71.95 60.91 -

KERM w/o TP 80.42 71.90 60.77 -

SOON
KERM 51.62 38.05 23.16 4.04

KERM w/o TP 51.62 35.23 21.53 3.52

paneled barroom
tile are behind bathroom fixture 

side by side bathroom fixture 
colonial style mirror

design in bathroom
tile are behind bathroom fixture

design in bathroom

photograph in bathroom
photograph of bathroom

photographed bathroom
bathroom in photograph 

painting on bathroom 
bathroom painted color
design in bathroom

side by side bathroom fixture

tile are behind bathroom fixture

wall-mounted light

sconce hanging above mirror

wall mounted light
wall mounted fixture 

sconce hangs over mirror

painting above sink

side by side bathroom fixture 

wall separating bathroom

design in bathroom

[C
LS

]
G

o to th
e

b
at

h
ro

o
m

o
f

th
e 

b
ed

ro
o

m
 

o
n

 
th

e 
le

ft
 

at
 

th
e 

en
d

 
o

f 
th

e 
h

al
lw

ay
 

b
y 

th
e 

d
is

p
la

y 
ca

b
in

et
an

d
 

b
ri

n
g 

m
e 

th
e 

p
h

o
to

h
an

gi
n

g 
o

n
 

th
e 

w
al

l
o

p
p

o
si

te
 

th
e 

sh
o

w
er

d
o

o
r

[E
N

D
]

Figure 2. Illustration of the weights for the 25 facts during fact
purification. Best viewed in color.

weights for each fact corresponding to each word in the in-
struction during fact purification. It is illustrated that our
model can automatically select the relevant facts to make
better action prediction.
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