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A. Additional Results

Results on Image-text Tasks. As the design of LAVENDER
is not specific to video-text inputs, we can extend it to image-
text tasks. Table 1 summarizes some initial results by evalu-
ating the pre-trained LAVENDER on a challenging image-text
task Visual Commonsense Reasoning [36] (VCR), follow-
ing [9, 37]. LAVENDER can still perform competitively on
this image-text task, much better than MERLOT pre-trained
on 3M images or 100M videos (71.6 vs. 58.9/66.3). Note
that LAVENDER is pre-trained and finetuned with lower-
resolution input (224x224), while MERLOT is based on
videos/images of much higher resolution (384x704).

# pre-train # pre-train VCR
Method videos/images epochs Q→A

MERLOT [37]

-/∼3M 5 58.9
100M/- 5 66.3
180M/- 5 75.2
180M/- 40 80.6

VIOLET [9] 183M/3M 5 76.3
LAVENDER 2.5M/3M 10 71.6

Table 1. Evaluation on Visual Commonsense Reasoning [36].
Top-1 accuracy is reported for the sub-task Q→A.

Results with Other Video Backbone. For strictly fair
comparison, we design LAVENDER to be only different from
LAVENDER-TS on the shared Masked Language Modeling
(MLM) head and objective. Hence, results in Table 2 of the
main text provide evidence that the performance gain largely
comes from the unified architecture. Here, we conduct ad-
ditional experiments with shared MLM head and objective
based on the ClipBERT [15] architecture, where a ResNet-
50 [11] with mean pooling is used for video encoder, text
encoder + fusion encoder is similarly initialized with BERT-
base. We follow [15] to pre-train on COCO [6]+VG [14]
data with our proposed VTM as MLM + MLM, and perform
single-task finetuning on downstream tasks. Results in Ta-
ble 2 further validates the gain from our unified architecture.

TGIF MSRVTT DiDeMo
Method Pre-train Task Act. QA Ret

ClipBERT [9] VTM+MLM 82.9 37.4 43.1
Ours VTM as MLM + MLM 88.9 40.2 43.8

Table 2. Results with other video backbone. We experi-
ment with ResNet-50 + Mean pooling for the video encoder, as
proposed in ClipBERT [15]. Both models are pre-trained on
COCO [6]+VG [14].

Results with Frozen Multimodal Encoder. We follow
the standard practice and the popular trends in the litera-
ture [9, 15, 37] to train LAVENDER in an end-to-end manner,
during both pre-training and finetuning stages. In Table 3, we
compare model performance of frozen multimodal encoder
and end-to-end finetuning with both LAVENDER-TS and
LAVENDER. Freezing encoder parameters results in severe
performance drop for both models (-32.8 for LAVENDER
and -34.0 for LAVENDER-TS).

Freeze Meta TGIF MSVD MSRVTT DiDeMo
Method Encoder Ave. Act. QA Cap. Ret

LAVENDER
Y 36.1 28.1 37.9 33.4 44.8
N 68.9 95.8 54.4 57.3 68.2

LAVENDER-TS
Y 30.0 21.7 19.2 34.8 44.3
N 64.0 94.5 46.7 59.0 55.7

Table 3. Results with frozen multimodal encoder. All results
are reported with single-task finetuning, based on the pre-trained
weights on 2.5M videos + 3M images.

Ablation on the position to insert [MASK]. We ablate the
position to insert [MASK] token during both pre-training
and finetuning, with 4 variants:

• Replace [CLS] with [MASK].

• Insert [MASK] at the beginning of the sentence before
[CLS].

• Insert [MASK] in the middle of the sentence. For simplic-
ity, we insert the [MASK] token at fixed position as the
10th token.
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Finetune Method Meta TGIF MSRVTT LSMDC MSVD DiDeMo
Ave. Act. Trans. Frame MC QA Ret Cap MC FiB Ret QA Ret Cap Ret

MT (all-in-one)
LAVENDER-TS 69.2 93.8 97.2 65.4 92.2 41.7 52.7 54.2 83.0 49.5 34.7 49.2 65.6 133.7 56.5

LAVENDER 73.4 95.8 98.0 70.7 93.9 44.1 56.3 57.1 85.3 56.5 39.4 53.4 69.2 141.1 66.1

MT (best)
LAVENDER-TS 69.6 93.8 97.4 65.9 92.2 41.7 52.7 54.2 83.1 49.8 34.8 50.9 65.6 135.8 56.5

LAVENDER 73.8 95.8 98.3 71.6 94.3 44.2 56.4 57.2 86.0 56.7 39.4 55.4 69.3 141.6 66.5

Table 4. Comparison between LAVENDER and LAVENDER-TS under full multi-task setting. Accuracy, average (R1, R5, R10) and
CIDEr score are used as evaluation metrics for video QA, retrieval and captioning tasks. Meta-Ave. is the average score across all evaluation
datasets. All results are reported under VidL pre-training on 2.5M videos + 3M images.

Finetune Meta TGIF MSRVTT LSMDC MSVD DiDeMo
Method # Params Ave. Act. Trans. Frame MC QA Ret Cap MC FiB Ret QA Ret Cap Ret

ST 14P 76.0 94.8 98.7 73.5 97.2 45.0 61.4 59.4 85.9 57.1 41.9 55.6 72.3 150.3 72.4
MT (all-in-one) P 75.2 95.4 98.4 71.0 94.5 44.7 58.9 57.9 87.0 56.6 41.7 54.0 71.7 150.0 71.1
MT (best) 14P 75.4 95.6 98.6 72.5 94.5 44.8 59.1 58.9 87.0 56.9 41.9 56.6 71.9 150.1 71.3
MT → ST 14P 76.2 96.3 98.6 71.8 97.4 45.0 61.7 60.1 87.0 57.1 43.3 54.3 71.8 150.7 71.5

Table 5. Multi-task Finetuning of LAVENDER with scale-up VidL Pre-training on 14M videos + 16M images. Accuracy, average(R1,
R5, R10) and CIDEr score are used as evaluation metrics for video QA, retrieval and captioning tasks. Meta-Ave. is the average score across
all evaluation datasets. P denotes the total parameter count in LAVENDER (backbone + MLM head).

• Insert [MASK] at the end of the sentence. This is the
default setting in the paper.

Replace Begin Middle End
Replace 50.4 50.2 50.0 50.6
Begin 51.1 51.2 50.7 51.8
Middle 48.7 48.6 50.3 50.6
End 50.9 51.2 51.7 52.2

(a) MSVD-QA

End
Replace 54.6
Begin 54.6
Middle 53.8
End 55.5

(b) MSRVTT-Cap

Replace Begin Middle End
Replace 71.6 78.7 91.9 91.7
Begin 83.0 80.8 92.9 92.4
Middle 91.5 90.7 93.3 91.3
End 90.7 91.6 91.8 92.9

(c) TGIF-Action

Table 6. Ablations on the position to insert [MASK] during both
pre-training (row of each table) and finetuning stage (column of
each table). All results are based on pre-trained weights on 3M
images with single-task fientuning. Note that for auto-regressive
caption generation on MSRVTT-Cap, the [MASK] token is always
appended to previously generated tokens.

For faster iteration, we pre-train LAVENDER by varying
the [MASK] position on CC3M data, and perform single-
task finetuning on each task. Results in Table 6 show that
inserting [MASK] at the end of the sentence brings competi-
tive performance consistently over different tasks.
Ablation on Pre-training Data. We conduct ablations
on using image-text only (CC3M [26]) or video-text only
(WebVid2.5M [2]) data for pre-training, and compare it with
using both datasets for pre-training in Table 7. Compared
to without pre-training, image-text pairs alone pre-training
improves on three tasks and performs comparably on TGIF-
Action. Video-text pairs alone pre-training improves on all

tasks, and combining image-text and video-text together
achieves the best results. Our observation of this combined
pre-training recipe being beneficial for video-text tasks is
consistent with what was reported in [2].

Meta TGIF MSVD MSRVTT DiDeMo
Pre-train Data Ave. Act. QA Cap. Ret

N/A 45.5 93.5 40.8 47.7 0.0
WebVid2.5M 65.1 94.3 53.0 54.7 58.2

CC3M 65.4 92.9 52.2 55.5 61.1
WebVid2.5M+CC3M 68.9 95.8 54.4 57.3 68.2

Table 7. Ablation on pre-training data. All results are reported
with single-task finetuning.

Model Architecture
# Layers in

Decoder
MSRVTT-

Cap
Encoder-only (LAVENDER) N/A 47.7

Encoder-decoder

2 42.6
4 45.0
6 43.8

12 42.8

Table 8. Comparison between encoder-only and encoder-
decoder architecture. All results are based on single-task finetun-
ing without pre-training.

Encoder-only vs. encoder-decoder architecture. We
follow the popular model architecture adopted in video-
language literature, which is encoder-only architecture [9,
15, 27, 34, 37]. Compared to encoder-decoder architecture,
MLM head is more lightweight, as shown in Figure 1 of
the main text. That being said, we report performance of
an encoder-decoder model on MSRVTT captioning as a
comparison in Table 8. The results show some interest-
ing findings: (i) reducing the number of decoder layers
can improve caption performance (CIDEr score), but the
improvements become less prominent when using only 2 de-



coder layers; (ii) encoder-only achieves better performance
than the encoder-Decoder variants, which may due to more
randomly initialized parameters added in Encoder-Decoder
architecture. Full encoder-decoder model pre-training is out
of the scope of this paper.

MSRVTT QA Caption Retrieval
ST 44.2 57.3 58.9
MT (video domain) 44.1 56.8 55.3
MT (task type) 43.2 56.9 -
MT (mixed, as in Table 2, main text) - 57.4 -
All-in-one (as in Table 3, main text) 44.2 57.2 56.4

Table 9. Investigations on different multi-task settings with
LAVENDER. Due to differences in data split for MSRVTT tasks,
we strictly filter out testing videos from all training splits for MT
(Appendix C). Hence, on retrieval task, ST model is finetuned with
more data than MT/All-in-one models.

Investigation on Other Multi-task Settings. We follow
previous work [17] to explore different MT settings and share
similar findings. We compare MT by video domain/task
type with mixing domain and task type (Table 2, main text)
and All-in-one (Table 3, main text). Overall, All-in-one
empirically strikes a balance between sophisticated heuristic
designs of multi-task setting and good model performance.
Full Results on Multi-task Finetuning. Table 4 com-
pares LAVENDER and LAVENDER-TS under full multi-task
finetuning settings, LAVENDER consistently outperforms
task-specific baseline over all tasks with a gain of +4.2 on
average. For completeness, we include additional results
under multi-task finetuning. Table 5 presents the results of
single-task finetuning and multi-task variants from the scale-
up pre-training on 14M videos + 16M images. For easier
reference in future work, we report detailed retrieval results
on R1/5/10 in Table 10.
Investigation on Other Pre-training Tasks. As men-
tioned in the main text, we only adopt Masked Language
Modeling (MLM) and Video Text Matching (VTM) as pre-
training tasks for both the proposed LAVENDER and the task-
specific baseline LAVENDER-TS. Here we briefly discuss
other popular pre-training objectives with LAVENDER-TS.
The first is Frame Order Modeling [16,37], where the input
video frames are randomly shuffled and the goal is to revert
back its original order. Different from the video-ASR pairs
utilized in these works, the paired text in our pre-training
data is not temporally grounded. In most cases, the shuffled
frame sequence will probably still be globally aligned with
the textual description. Hence, such fine-grained temporal
reasoning objective is not applicable in our case. The sec-
ond is Masked Visual Modeling (MVM), where the model
learns to reconstruct high-level semantics or low-level details
for a certain percentage of “masked” visual inputs (i.e., fea-
tures or patches). Different variants have been proposed and
shown little-to-none effect in vision-language pre-training,

such as predicting the object category of masked image
regions [7] and distilling region/frame features from well-
supervised vision encoders [7, 16]. More recently, by taking
advantage of pre-trained DALL-E [23], researchers [3, 9, 28]
have shown potentials in masked visual token modeling,
which asks the model to recover the discrete latent codes
of the masked image patches. [31] explores image feature
descriptors such as Histograms of Oriented Gradients (HOG)
as the prediction target for self-supervised visual pre-training.
In Table 11, we investigate three different MVM objectives
on top of VTM + MLM pre-training for LAVENDER-TS:
(i) VQ Token: to recover the discrete codes extracted from
pre-trained DALL-E following [9]; (ii) Pixel: to regress the
RGB colors as in [31]; and (iii) HOG: to regress the HOG
values, following [31]. Results show that only MVM with
HOG achieves a marginal performance improvement of +0.3
on average. Therefore, we adopt a simple recipe for all other
pre-training experiments in the paper, that is with only MLM
and VTM.
Qualitative Comparisons to Task-specific Baseline. Fig-
ure 1 provides qualitative comparisons between LAVENDER
and task-specific baseline LAVENDER-TS on video question
answering (QA). The model predictions are sampled from
MSVD-QA.

In Figure 1a, the ground-truth answer “fold” is not in the
top-k (k = 1000 for MSVD-QA, following [9]) most com-
mon answers in training split, hence excluded from the pre-
defined answer vocabulary for training LAVENDER-TS. In
Figure 1b, the ground-truth answer “bowl” appears roughly
9 times more than “bag” in the training split. These visual-
ization results on video QA suggest that (i) our LAVENDER
can better fit the open-ended setting for QA tasks, as it does
not restrict the predictions to be from a pre-defined answer
vocabulary as in LAVENDER-TS (Figure 1a); and (ii) the
task-specific baseline is easier to fail on questions with out-
of-distribution answers than LAVENDER (Figure 1b). Addi-
tionally, we show in Figure 1c when both models can provide
reasonable answers to the question, which do not exactly
match the ground-truth answer. This result reveals poten-
tial problems with the current evaluation metrics or existing
datasets on video QA. Future work may consider collecting
additional annotations to enrich the dataset and improve the
evaluation metric to handle multiple ground-truth answers
(e.g., similar to VQA scores [10]). Other common failure
cases of LAVENDER may result from sparsely sampled vi-
sual inputs. When the key frames are missing, the model
fails on QA or retrieves a wrong video or generates inaccu-
rate captions, which unarguably is a shared caveat among
existing SOTA VidL models.

B. Additional Comparison with Existing Work
Figure 2 in the main text shows the detailed compar-

ison between LAVENDER and existing methods with the



# Pretrain Finetune Text-to-Video Retrieval
videos/images Method MSRVTT DiDeMo MSVD LSMDC

2.5M / 3M

ST 37.8 / 63.8 / 75.0 47.4 / 74.7 / 82.4 45.8 / 75.7 / 85.0 22.2 / 43.8 / 53.5
MT (all-in-one) 33.7 / 61.3 / 73.9 44.1 / 72.4 / 81.8 45.4 / 76.5 / 85.8 22.4 / 42.8 / 53.1
MT (best) 34.9 / 61.1 / 73.2 46.3 / 72.2 / 81.1 46.2 / 76.2 / 85.5 22.4 / 42.8 / 53.1
MT → ST 36.8 / 63.4 / 75.2 45.9 / 73.0 / 84.1 46.3 / 76.9 / 86.0 22.8 / 43.5 / 53.2

14M / 16M ST 39.7 / 66.7 / 77.8 53.4 / 78.6 / 85.3 50.1 / 79.6 / 87.2 25.1 / 44.6 / 56.0
MT (all-in-one) 37.6 / 63.4 / 75.6 50.3 / 77.8 / 85.2 49.4 / 78.7 / 86.8 23.4 / 77.8 / 85.2
MT (best) 37.5 / 64.2 / 75.7 51.0 / 78.1 / 84.7 49.9 / 79.0 / 86.8 24.1 / 46.3 / 55.4
MT → ST 40.7 / 66.9 / 77.6 51.6 / 77.7 / 85.1 49.8 / 78.8 / 86.8 26.1 / 46.4 / 57.3

Table 10. Detailed results of LAVENDER on text-to-video retrieval tasks under single-task (ST) finetuning, and different multi-task (MT)
finetuning settings. All results are reported on R1/5/10.

Pre-raining Meta TGIF MSRVTT LSMDC MSVD DiDeMo
Tasks Ave. Act. Trans. Frame QA Ret Cap FiB QA Ret

VTM+MLM 60.9 91.5 98.6 64.6 40.7 50.6 53.0 51.9 45.3 52.2
+ VQ Token [9] 60.8 92.4 98.6 63.9 40.3 52.1 52.5 51.1 44.5 51.6
+ Pixel [31] 60.3 91.0 98.4 63.4 40.5 52.3 50.7 51.6 42.5 52.2
+ HOG [31] 61.2 91.7 98.6 64.4 40.4 51.8 53.4 50.5 45.8 53.9

Table 11. We investigate different Masked Visual Modeling tasks for pre-training LAVENDER-TS. Accuracy, average (R1, R5, R10) and
CIDEr score are used as evaluation metrics for video QA, retrieval and captioning tasks. Meta-Ave. is the average score across all evaluation
datasets. VidL pre-training is conducted on WebVid2.5M [2].

(a)

(b)

(c)

Figure 1. Visualization of model predictions from LAVENDER (ours) and LAVENDER-TS (task-specific) on video question answering.
Green (Red) highlights the correct (wrong) predictions.

image/video question answering task as an example. In
Figure 2, we illustrate the differences among these meth-
ods in pre-training. Unlike existing video-language models,
which design task-specific heads and objectives for differ-
ent pre-training tasks. LAVENDER unifies masked language

modeling (MLM) and video text matching (VTM) as MLM.
Compared with unified image-text models (e.g., VL-T5 [8]),
which are typically pre-trained with a combination of com-
plex pre-training tasks, such as visual question answering
and grounded captioning. Although these pre-training tasks



(a) Task-specific VidL Methods (b) Unified Image-text Models (c) LAVENDER

Figure 2. Illustration of the differences between LAVENDER and existing methods during pre-training. LAVENDER unifies both masked
language modeling (MLM) and video text matching (VTM) as MLM, without task-specific heads in existing video-language (VidL) models.
Take VL-T5 [8] as an example; most unified image-text models are pre-trained with a combination of complex pre-training tasks (e.g., visual
question answering (VQA), visual grounding (VG), grounded captioning (GC)).

may enable the model with new abilities (e.g., generating
region proposals as in [30, 35]), the supervision often comes
from human-annotated data. It remains unclear how to de-
sign and effectively pre-train a unified model with such ca-
pability but without dependency on human-labeling.

C. Implementation Details
Task-specific Prompts and Tokens. As mentioned in
Section 4.3 of the main text, we explore the vanilla multi-
task finetuning without any task-specific designs and two
additional variants with task-specific prompts and tokens for
LAVENDER. Here, we describe the prompts and tokens used
in these baselines.

For task-specific prompts, we insert a human-readable
text prompt at the beginning of the text input.

• For text-to-video retrieval and video-text matching during
pre-training, the text prompt is “is the video-text paired,
true or false”;

• For multiple-choice video question answering (QA), the
text prompt is “which answer choice is correct, choose
from 0, 1, 2, 3, 4.”;

• For open-ended video QA, the text prompt is “answer the
question about the video.”;

• For video captioning, the text prompt is “write a descrip-
tion about the video.”.

As discussed in the Experiments section of the main text,
we only briefly investigate prompt tuning with LAVENDER.
How to design more diverse prompts for more effective
prompt tuning is an interesting direction for future work.

For task-specific tokens, we add several new tokens to
the whole vocabulary, and learn these token embeddings
from scratch during multi-task finetuning. For both training
and inference, the task-specific token is inserted right after
[CLS] token in the text input. Specifically, we add [VTM]

for text-to-video retrieval and video-text matching, [MC]
for multi-choice video QA, [OE] for open-ended video QA,
[CAP] for video captioning.

Additional Training Details. All experiments are con-
ducted on Microsoft Azure [1], adopting mixed-precision
training with DeepSpeed [24]. All video data are pre-
processed by evenly extracting 32 frames to avoid expensive
decoding on-the-fly. Our implementation of LAVENDER is
based on PyTorch [22]. We adopt AdamW [18] as the opti-
mizer with an initial learning rate of 2e-5, betas of (0.9, 0.98),
and weight decay of 1e-3 for all pre-training and finetuning
experiments. For pre-training, we adopt a batch size of 28
per GPU. During training, we randomly sample T frames
from 32 frames, resize the shorter side of all frames to 224
and random crop (H=W=224) at the same location for all
the frames in a given video, to further split into patches with
size h=w=32. During inference, we evenly sample T frames
from 32 frames and center crop (H=W=224) for all the
frames. For all downstream tasks, we adopt the same video
frame size and patch size, but T=5 video frames. We sum-
marize the training configurations for downstream finetuning
in Table 12. Due to various data scales and domains, we
use task-specific batch size and training epochs based on the
performance of the validation set for each downstream task
(Table 12b). All other settings are shared across all datasets
(Table 12a).

For multi-task finetuning, since the same set of videos
are shared among several downstream tasks, there might be
overlaps between one’s training split and others’ validation
or testing split (e.g., some video-text pairs in MSRVTT-
Retrieval 9K-train is in the testing split of MSRVTT-
Captioning). To avoid data contamination, we filter out
validation and testing videos in all downstream datasets
from the training splits, and use this cleaned version for
multi-task finetuning. At each training step, we randomly
sample one dataset from all 14 of them, and construct a batch
of examples from that dataset. The training is conducted on



16×80GB A100 for 20 epochs, and we adopt the same batch
size for retrieval tasks as shown in Table 12b, and batch size
60 for all other tasks.

Learning Rate 2e-5
Weight Decay 1e-3
Optimizer AdamW [18]
βs (0.9, 0.98)
Warmup Ratio 10%
# Frames (T ) 5
Frame Size (H , W ) (224, 224)
Patch Size (h, w) (32, 32)

(a) Common Configurations.

Dataset # GPUs Batch Size / GPU # Epochs

Video Question Answering
TGIF-Action

8×32GB V100 24

56
TGIF-Transition 15
TGIF-Frame 10
MSRVTT-QA 8
LSMDC-MC 10
LSMDC-FiB 5
MSVD-QA 8
Text-to-Video Retrieval
MSRVTT 16×80GB A100

20
10

LSMDC
8×80GB A100

5
MSVD 5
DiDeMo 16 10
Video Captioning
MSRVTT

8×32GB V100 24 20
MSVD

(b) Task-specific Configurations.

Table 12. Training Configurations For Downstream Finetuning.

D. Pre-training Data
Public Datasets We use the following publically available
datasets to pretrain LAVENDER:

• WebVid2.5M [2] scrapes 2.5M video-text pairs from the
web. The texts in this data are alt-text descriptions, which
generally describe the global video semantics.

• Conceptual Captions 3M (CC3M) [26] consists of 3.3M
image-text pairs, which are also harvested from the web.
CC12M [4] further enlarges CC3M by 4 times. Both have
been used to pre-train large-scale image-text models.

• SBU-Captions [21] is another widely used dataset for
image-text pre-training, web-crawled from Flickr. It con-
tains 1M image-text pairs.

• COCO [6] and Visual Genome (VG) are two human-
annotated image-text datasets. COCO contains 5 captions
per image over 120K images. Unlike COCO captions that
can describe the whole scene, VG collects 5M regional
descriptions over more than 100K images.

Video-Text Data Collection For the scale-up pre-training,
we additionally crawl 11.9M video-text pairs from the web,
following the same procedure in [2]. Here, we briefly de-
scribe how we collected the data.

WebVid2.5M has led to promising results in text-to-video
retrieval tasks as shown in [2]. This motivates us to further
crawl more video-text pairs from the same source. We first
use a search engine to identify the potential data sources
based on sampled textual descriptions in WebVid2.5M, and
then we scrape the video-text pairs from these data sources.
Similarly, we follow [2,26] to filter out offensive content and
hide person and location names. In total, we have collected
11.9M videos, each accompanied with an alt-text description.
The collected dataset shares similar characteristics as Web-
Vid2.5M, with the average video duration as ∼ 20 seconds,
and the average number of words in the textual description as
∼20. Note that at the time when we started this project, Web-
Vid10M in [2] has not been released yet. We later found our
11.9M data largely overlaps with WebVid10M. Hence, we
refer future work to WebVid10M for scale-up pre-training.

E. Downstream Datasets
In this section, we introduce all downstream datasets used

for evaluating LAVENDER and discuss some dataset-specific
training details below. Table 13 summarizes the number of
examples in training/validation/testing split for each dataset.

Text-to-video Retrieval We evaluate LAVENDER on 4 pop-
ular text-to-video retrieval datasets, namely MSRVTT [33],
DiDeMo [12], MSVD [5] and LSMDC [25]. MSRVTT
contains 10K YouTube videos with 200K descriptions. We
follow [2] to train on 9K videos and evaluate on 1K-A testing
split. DiDeMo consists of 10K Flickr videos, each annotated
with 4 sentences. We concatenate all sentences from the
same video into a paragraph and perform paragraph-to-video
retrieval, following [2,15]. Although this dataset comes with
localisation annotations (ground-truth temporal proposals)
for each sentence, we perform all experiments without lever-
aging this fine-grained information for both training and
evaluation. Instead, we use the same procedure as described
in Appendix C to sample frames from videos. MSVD is
based on 2K YouTube videos and crowdsourced 40 textual
descriptions per video. LSMDC is built upon 118K video
clips from 202 movies. Each clip has a caption from movie
scripts or descriptive video services. We use the standard
splits for DiDeMo, MSVD and LSMDC, following [19]. For
paragraph-to-video retrieval on DiDeMo, we adopt the text
augmentation technique proposed in Frozen [2], which is
to randomly sample and concatenate a variable number of
sentences as paragraph for each video.
Multiple-choice Video QA We evaluate LAVENDER on
four multiple-choice QA datasets: TGIF-Action, TGIF-
Transition [13], MSRVTT-MC [32] and LSMDC-MC [20].



TGIF MSRVTT LSMDC MSVD
Action Transition Frame QA MC FiB MC QA

Training 18K / 18K 26K / 47K 30K / 35K 6.5K / 149K - / - 95K / 297K 101K / 101K 1.2K / 30K
Validation 2K / 2K 5K / 5K 4K/ 4K 0.5K / 123K - / - 7K / 22K 7K / 7K 0.2K / 6K
Testing 2K / 2K 3K / 6K 7K/ 14K 3K / 73K 3K / 3K 9.5K / 30K 10K/ 10K 0.5K / 13K
# answer choices

5 5 - - 5 - 5 -
(MC-QA)

(a) Video Question Answering Tasks (# videos / # video-question pairs). For open-ended QA, we do not restrict the answer vocabulary to contain only
the most common answers in training split. Theoretically, the model predictions can be any word in the whole vocabulary of vocab size = 30,522.

MSRVTT MSVD LSMDC DiDeMo
Ret. Cap. Ret. Cap. Ret Ret

Training 9K / 180K 6.5K / 130K 1.2K / 49K 1.2K / 49K 101K / 101K 8K / 8K
Validation 1K / 1K† 0.5K / 10K 0.1K / 4K 0.1K / 4K 7K / 7K 1K / 1K
Testing 1K / 1K 3K / 60K 0.7K / 28K 0.7K / 28K 1K / 1K 1K / 1K

(b) Text-to-video Retrieval and Video Captioning Tasks (# videos / # video-text pairs).†: on MSRVTT-Retrieval, we use the same split of 9K-training
in [2, 19]. For the validation purpose, we use the original validation split in 7K-training version, whose examples are included in the training split of
9K-training.

Table 13. Data Distribution of Downstream Datasets.

TGIF-Frame MSRVTT-QA LSMDC-FiB MSVD-QA
Train Val Test Train Val Test Train Val Test Train Val Test

Max answer len 4 5 5 4 7 6 3 3 3 4 4 4
% of data w/ answer len > 1 2.8 2.8 2.5 2.9 4.9 4.6 2.4 2.7 2.6 6.6 7.9 7.0

Table 14. Answer Length Distribution for Open-ended Video Question Answering. In summary, there are < 8% of examples across
training, validation and testing split of each dataset, with answer length > 1.

Among them, TGIF-Action and TGIF-Transition aim to
test the model’s ability to recognize repeating actions and
state transitions in short GIFs. Each video-question pair is
accompanied with 5 answer choices. We concatenate the
5 answer choices sequentially with the question, and the
model is asked to predict the ground-truth answer index.
MSRVTT-MC and LSMDC-MC are based on retrieval
tasks, but reformulated as multiple-choice QA. A model
needs to find the caption that describes the video out of 5
candidate captions. Due to its similarity to video-to-text re-
trieval, we formulate it as video-text matching, which is the
same as zero-shot evaluation described in the Experiments
section of the main text. Specifically, we let LAVENDER
to predict true or false via MLM head, given a video-
question-answer input, and we rank the probability of model
prediction as true across all answer choices. As there is
no training and validation data constructed in the same way
for MSRVTT-MC, we follow [15] to evaluate the retrieval
model trained on MSRVTT to rank the 5 candidate answers.

Open-ended Video QA Four datasets are considered for
open-ended video QA: TGIF-Frame [13], MSRVTT-QA,
MSVD-QA [32] and LSMDC-FiB [20]. Among them, the
question-answer pairs in all but TGIF-Frame are based on
the linguistic transformation of captions for each video.
Questions in TGIF-Frame is collected via crowd-sourcing,
which are answerable with just a single frame in the video.
MSRVTT-QA contains 243K open-ended questions over
10K videos and MSVD-QA consists of 47K questions over

2K videos. The Fil-in-the-blank (FiB) task of LSMDC-
FiB is, given a video and a sentence with a blank in it, to
predict a correct word for the blank. We replace the blank
with a [MASK] token, and naturally it becomes a Masked
Language Modeling (MLM) task.

As mentioned in the main text, LAVENDER answers the
open-ended questions in these datasets with only one word,
as there is only one [MASK] token appended to the text
input. Table 14 summarizes the max answer length and
the percentage of examples with answers longer than one
word in all four datasets. As the statistics show, > 92% of
questions are answerable with a single word.
Video Captioning MSRVTT [33] and MSVD [5] are used
for captioning evaluation. As introduced before, MSRVTT
consists of 10K videos with 20 captions per video, and
MSVD contains 2K videos, with 40 captions per video. We
follow the standard captioning splits in [33] and [29] for
MSRVTT and MSVD, respectively.

The captions are generated auto-regressively during infer-
ence, while the training objective is still the same masked
language modeling. During training, we randomly mask
15% of the tokens in the captions, and let the model predict
the masked tokens. During inference, at each generation step,
a [MASK] token is appended to the previously generated
tokens, and the model will predict the current tokens based
on the learned embedding at the [MASK] token position.
We perform caption generation until the model outputs a
[SEP], which is defined as the sentence ending token or



when it reaches the maximum generation step 50. Note, that
the attention mask used for caption generation is a causal
attention mask. That is, for a given word, it only attends to
the words before it, not the ones coming after it.
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