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Section 1 provides the systematic introduction for the re-
lated notations of the back-door criterion in causal learning.
Section 2 explains the counterfactual distortion augmenta-
tion from the causality perspective.
Section 3 theoretically derives the parallel sampling in Eq.
5 of our paper.
Section 4 clarifies the implementations of four variants of
our DIL, which can help the readers to reproduce our meth-
ods more easily.
Section 5 describes the more detailed experimental settings
and the construction of distortion/confounder set D in dif-
ferent image restoration tasks.
Section 6 visualizes more subjective comparisons on differ-
ent image restoration tasks.

1. The Back-door Criterion in Causality.

In this section, we clarify the related notations and
derivations for the back-door criterion in causality.
Structure causal Model. As described in [6, 14], we can
describe the causal relationship between different vectors
with a directed Structural causal Model (SCM) like Fig. 1.
A directed arrow X −→ Y represent X is the cause of the
Y . The difference between correlation and causation is as
follows: 1) In causation, given X −→ Y , changing the X
will cause the effect on Y . But changing Y does not have
an effect on X since Y is not the cause of X . 2) In cor-
relation, we can compute the correlation between X and Y
with conditional probability P (Y |X) and P (X|Y ) no mat-
ter whether there is causation between X and Y . In general,
model training in deep learning is a process to fit the correla-
tion between inputs and their labels instead of the causation.
Confounder. The confounder is defined based on the SCM,
which represents the variables (e.g., C in Fig. 1) that are the
common cause between two other variables (e.g., X and Y
in Fig. 1). The fork connection X ←− C −→ Y causes the
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Figure 1. A structural causal model for back-door structure.

spurious correlation for X and Y , which has a confounding
effect on the estimation of the causal relationship between
X and Y . In other words, the correlation between X and Y
learned by the model also is implicitly conditioned on the
confounder C.
do operation. A do operation means to cut off the connec-
tion from the C −→ X , which is shown in Fig. 2. In this way,
the correlation introduced from the path X ←− C −→ Y is
removed from do operation. Then the correlation learned by
the model is only from the X −→ Y , which are represented
as P (Y |do(X)). And this causal correlation is independent
of the confounder C and is what we expect the model to
learn.
Back-door criterion. The back-door criterion is proposed
in [6, 14], which aims to implement the do operation and
eliminate the spurious correlation existed in X ←− C −→
Y . It removes the confounding effects of confounder C by
computing the average causal effects between X −→ Y by
traversing all values of C as:

P (Y |do(X)) =
∑
c

P (Y |X,C = c)P (C = c) (1)

Based on Eq. 1, we can achieve the do operation in Fig. 2
(b).
The back-door criterion in Image Restoration As shown
in Fig. 2 in our paper, we model the image restoration pro-
cess as a structural causal model, where D = {di|1 ≤ i ≤
n} are the confounders between the distorted images Id and
the expected reconstruction images Io, which satisfies the
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Figure 2. Back-door Criterion in Causality.

back-door criterion. Therefore, we can derive the back-door
criterion in image restoration as:

P (Io|do(Id)) =
n∑

i=1

P (Io|Id, D = di)P (D = di) (2)

2. A proof for counterfactual distortion aug-
mentation.

The conterfactuals aims to answer the question ”“if X
been x, in the situation U , what YX=x(U) would be?”.
The three variables are in the same structural causal model
(SCM), and X and U are the cause of Y . As described
in [6, 14], the calculating of counterfactuals follows three
steps: 1) Abduction: Use evidence e to determine the value
of U. 2) Action: Remove the structural equations for the
variables X to modify the model M (i.e., the SCM). Then,
set the X as X = x to obtain the modified Mx. 3) Predic-
tion: Use the Mx and U = u to compute the value of Y
(i.e., the consequence of the counterfactual).

Considering the generation process of the distorted im-
ages Id = g(Ic, d), where Ic and d are the clean images
and distortion type/degree, respectively. g is the degrada-
tion process. The generation process can be modeled as a
structural causal model Ic −→ Id ←− d. To construct the
datasets for the training of DIL, it is better to collect var-
ious distorted/clean image pairs with different distortions
but the same content. However, in the real world, it is non-
trivial to collect the datasets to satisfy this. Therefore, we
can construct the ideal datasets by answering the counter-
factual question “if D is di, what the Id would be with Ic
invariant?”. We call the construction counterfactual distor-
tion augmentation.

Analogously, the computing of counterfactuals in distor-
tion augmentation follows a three-step procedure. 1) Ab-
duction: Use the distorted image Id to determine the value
of Ic, i.e., P (Ic|Id). 2) Action: Modify the degradation
model, g, so that D is adjusted to the counterfactual value
di, that might rarely existed in real-world (e.g., the synthe-
sised distortions). 3) Prediction: Compute the consequence
Idi

of the counterfactual based on estimated Ic and modified
degradation model gdi .

It is fortunate that there are amounts of high-quality im-
ages captured by professional devices, that are only de-
graded by some extremely mild distortions. We can regard

these images as clean images Ic. Therefore, the first step
in counterfactuals is unnecessary and can be ignored. We
can implement the counterfactual distortion augmentation
by adding different synthetic distortion types or degrees to
the same image contents Ic.

3. The derivation of the parallel sampling.
In this section, we will give the derivation of our parallel

sampling in Eq. 5 of our paper. From Eq. 3 and Eq. 4 in
our paper as:

θ∗ =argmin
θ

E(Id,Ic)∼D[
1

n

∑
di∈D

L(fϕdi
(Id), Ic)],

where ϕdi
= θ − α∇θL(fθ(Idi

), Ic)

(3)

we can conduct the Talyor expansion for the above equation
at position θ as:

θ∗ = argmin
θ

E(Id,Ic)∼D{
1

n

∑
di∈D

[L(fθ(Id), Ic)

− α∇θL(fθ(Idi
), Ic)∇θL(fθ(Id), Ic)

+ o(∇θL(fθ(Id), Ic))]}
= argmin

θ
E(Id,Ic)∼D{L(fθ(Id), Ic)

− 1

n

∑
di∈D

α[∇θL(fθ(Idi
), Ic)]∇θL(fθ(Id), Ic)

+ o(∇θL(fθ(Id), Ic))]}}
= argmin

θ
E(Id,Ic)∼D{L(fθ(Id), Ic)

− α∇θ[
∑
di∈D

1

n
L(fθ(Idi

), Ic)]∇θL(fθ(Id), Ic)

+ o(∇θL(fθ(Id), Ic))]}}
(4)

Then we conduct the Taylor inverse expansion for the
Eq. 4. The Eq. 4 can be derived as:

θ∗ = argmin
θ

E(Id,Ic)∼D[

L(f(θ−α∇θ

∑
di∈D

1
nL(fθ(Idi ),Ic))

(Id), Ic)]
(5)

Let ϕd̄ = θ − α∇θ

∑
di∈D

1
nL(fθ(Idi

), Ic), we can obtain
the final equation as Eq. 5 of our paper as:

θ∗ = argmin
θ

E(Id,Ic)∼D[L(fϕd̄
(Id), Ic)],

where ϕd̄ = θ − α∇θ

∑
di∈D

1

n
L(fθ(Idi

), Ic),
(6)

4. The detailed algorithms on four variants of
DIL.

We further demonstrate the algorithm details of four
variants of our proposed DIL in the Alg. 1 (DILps), Alg. 2



Algorithm 1 DILps (The variant of DIL with parallel sam-
pling and second-order optimization)

1: Input: Training dataset D = {Idi , Ic|1 ≤ i ≤ n},
where n is number of distortion types and degrees (i.e,
confounders), and D = {di|1 ≤ i ≤ n} is the con-
founder set.

2: Init: Restoration network f with the parameters θ,
learning rate α for virtually updating, β for the train-
ing.

3: while not converge do
4: Sample training pairs (Id, Ic) from D.
5: Sample training pairs {Idi

, Ic}ni=1 from D.
6: Virtual updating for the parameters θ as :

ϕd̄ ←− θ − α∇θ

∑
di∈D

1
nL(fθ(Idi), Ic).

7: Updating the parameters θ with second-order gradi-
ent: θ ←− θ − βL(fϕd̄

(Id), Ic)
8: end while

Algorithm 2 DILss (The variant of DIL with serial sam-
pling and second-order optimization)

1: Input: Training dataset D = {Idi
, Ic|1 ≤ i ≤ n},

where n is number of distortion types and degrees (i.e,
confounders), and D = {di|1 ≤ i ≤ n} is the con-
founder set.

2: Init: Restoration network f with the parameters θ,
learning rate α for virtually updating, β for the train-
ing.

3: while not converge do
4: Sample training pairs (Id, Ic) from D.
5: for 1 ≤ i ≤ n do
6: Sample training pairs (Idi

, Ic) from D.
7: Virtual updating for the parameters θ:

ϕdi
←− θ − α∇θL(fθ(Idi

), Ic)
8: Compute the loss for the second-order gradient:
L(fϕdi

(Id), Ic)
9: end for

10: Updating the parameters θ with second-order gradi-
ent: θ ←− θ − β 1

n

∑
di∈D∇θL(fϕdi

(Id), Ic)
11: end while

(DILss), Alg. 3 (DILpf ), and Alg. 4 (DILsf ). As derived
in Eq. 6, we can utilize the parallel data sampling for all
distortions D to substitute the serial sampling based opti-
mization. The implementation differences between the two
sampling strategies can be observed by comparing the Line
5−6 in the Alg. 1 and Line 5−9 in the Alg. 2. We can find
that parallel sampling can reduce the number of parameter
updating by 1/n. By comparing the Alg. 1 and Alg. 3, we
can find that only first-order gradient existed in the DILpf ,
which is an approximation of the second-order optimization
in Alg. 1. The related proof can be found in the [13].

Algorithm 3 DILpf (The variant of DIL with parallel sam-
pling and first-order optimization)

1: Input: Training dataset D = {Idi , Ic|1 ≤ i ≤ n},
where n is number of distortion types and degrees (i.e,
confounders), and D = {di|1 ≤ i ≤ n} is the con-
founder set.

2: Init: Restoration network f with the parameters θ,
learning rate α for virtually updating, β for the train-
ing.

3: while not converge do
4: θ̃ ←− θ
5: for step=1 to 2 do
6: Sample training pairs {Idi , Ic}ni=1 from D.
7: Virtual updating:

θ̃ ←− θ̃ − α∇θ̃

∑
di∈D

1

n
L(fθ̃(Idi

), Ic.

8: end for
9: Updating the parameters θ: θ ←− θ − β(θ̃ − θ)

10: end while

Algorithm 4 DILsf (The variant of DIL with serial sam-
pling and first-order optimization)

1: Input: Training dataset D = {Idi
, Ic|1 ≤ i ≤ n},

where n is number of distortion types and degrees (i.e,
confounders), and D = {di|1 ≤ i ≤ n} is the con-
founder set.

2: Init: Restoration network f with the parameters θ,
learning rate α for virtually updating, β for the train-
ing.

3: while not converge do
4: θ̃ ←− θ
5: for 1 ≤ i ≤ n do
6: Sample training pairs (Idi , Ic) from D.
7: Virtual Updating: θ̃ ←− θ̃ − α∇θ̃L(fθ̃(Idi

), Ic)
8: end for
9: Updating the parameters θ: θ ←− θ − β(θ̃ − θ)

10: end while

5. Implementation Details.

5.1. Overall Settings.

For all image restoration tasks (except for the image
deraining task) in this paper, we use 800 images from
DIV2K [2] and 2650 images from Flickr2K [16] as the
clean images to construct the datasets for training. Follow-
ing the common setting [12, 21], In the training process,
we randomly crop the distorted/clean image pairs with the
size of 64 × 64 from the training images, and feed them to
the restoration network to optimize the parameters. In the
process of the counterfactual distortion augmentation, the
distorted patches Id are generated online according to dis-



tortion set D of different image restoration tasks. For ERM,
we use Adam optimizer with β1 = 0.9 and β2 = 0.999. For
DILsf and DILpf training paradigms, the same Adam op-
timizer with ERM is used for the training optimization for
the above two variants. For the virtual updating process, we
adopt the Adam optimizer with β1 = 0 and β2 = 0.999 fol-
lowing [13]. For DILss and DILps, we utilize the same two
Adam optimizers as that used in ERM for the virtual up-
dating step and training optimization step. We set the batch
size to 8 on each GPU. The total training iterations and ini-
tial learning rate are set to 400K and 1e-4, respectively. The
learning rate will reduce by half at [200K, 300K]. All the
tasks are optimized with the L1 loss if not mentioned. In
the image deraining task, we utilize Charbonnier [4] Loss
as:

Lchar =
√
∥Io − Ic∥2 + ϵ2 (7)

where Io and Ic denotes the reconstructed images and clean
images, respectively. Following previous works [8, 21], we
set ϵ to 1e-3.

5.2. The distortion/confounders set D for different
tasks.

In this section, we describe the specific construction of
the distortion/confounder set D in the counterfactual distor-
tion augmentation strategy.

5.2.1 Cross distortion degrees

Image Denoising. For image denoising, the distor-
tion/confounder set is composed of Additive White Gaus-
sian Noise (AWGN) with the noise intensity of [5, 10, 15,
20], which is added to the clean images from DF2K [2, 16]
to construct the training data. For testing, we utilize several
unseen noise intensities, including [30, 40, 50] to estimate
the generalization capability of different schemes.
Image Deblurring. For image deblurring, we obtain Id by
applying the distortion/confounding set D to Ic, which con-
tains the 2D gaussian filter with different blurring sigma of
[1.0, 2.0, 3.0, 4.0]. For testing, we validate the generaliza-
tion capability of different schemes on the sigma [4.2, 4.4,
4.6, 4.8, 5.0].
Hybrid distortion restoration. Following the [10, 20], the
hybrid distortions are degraded with the superposition of
blur, noise, and Jpeg compression artifacts in a sequence
manner. The distortion/confounder set D for training is
composed of multiple levels of severe hybrid distortions.
The test datasets are composed of unseen distortion levels,
including mild and moderate hybrid distortions.

5.2.2 Cross distortion types

Real Image Super-resolution. For real image super-
resolution, we utilize the degradation model introduced
by [17] for training. To simplify the training process, we
adopt the one-order distortion synthesis mode in [17] to
construct the distortion/confounder set D, where different
di ∈ D are divided with different noise types and blur types
in the degradation model of [17]. To validate the generaliza-
tion capability of different schemes for the “cross distortion
types”, we exploit the RealSR [3] and DRealSR [18] for the
real image super-resolution as our test data.
Real Image Denoising. For real image denoising, we ob-
tain Id based on the ISP process introduced by [7]. We
divide this degradation model into four different distortion
types based on the different color filter arrays (CFA) to con-
struct D. We follow previous works [1, 15] and utilize real
denoising datasets DND [15] and SIDD [1] as the bench-
marks to validate the generalization capability of different
schemes.
Image Deraining. For image deraining, we utilize
three datasets with three different raining types, includ-
ing Rain14000 [5], DID-MDN [22], and Heavy Rain
Dataset [9], to construct the training data D, and test the
generalization capability of the restoration network on other
three unseen raining types, including 100 rainy images from
Rain100L [19], 100 rainy images from Rain800 [23], and
12 rainy images from Rain12 [11]. It is noteworthy that
the synthesis strategies of the above raining types are rarely
released. Therefore, in this task, we relax the content con-
sistency between different raining types for training. And
our DIL is still effective for improving the generalization
capability of the restoration network.

6. More Subjective Visualization

We provide more visual comparisons for different im-
age restoration tasks in this section. As shown in Fig. 3, the
commonly-use ERM and our proposed DIL all achieve sim-
ilar reconstructed results on the seen noise level (σ = 15).
But ERM fails to restore high-quality images on unseen
noise levels well, (e.g., σ = 40 and σ = 50), which in-
dicates that ERM lacks of enough generalization ability for
the unseen distortion degrees. In contrast, our DILsf can
recover noise-free and structure-preserved images despite
the distortion degrees do not exist in the training data. This
further proves the correctness and effectiveness of our pro-
posed DIL.

We show more visual comparisons of image deblurring
in Fig. 4. When dealing with unseen blur degrees, our pro-
posed DIL can restore the clear structures, while ERM pro-
duces overshooting artifacts on the edges. More visual-
izations for real image denoising can be found in Fig. 5.
And more visualizations for image deraining can be found



Noisy ERM DIL𝑝𝑠 DIL𝑠𝑠 DIL𝑝𝑓 DIL𝑠𝑓
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Figure 3. Visual comparison of the commonly-used ERM and our proposed four variants of DIL on image denoising task. The noise level
above the dash line is seen, while noise levels below are unseen.Noisy ERM DIL𝑝𝑠 DIL𝑠𝑠 DIL𝑝𝑓 DIL𝑠𝑓

𝜎 = 15

𝜎 = 40

𝜎 = 50

𝜎 = 4.0

𝜎 = 4.2

𝜎 = 4.4

𝜎 = 4.0

𝜎 = 4.2

𝜎 = 4.4

Blurry ERM DIL Blurry ERM DIL

Figure 4. Visual comparison of the commonly-used ERM and DIL on image deblurring task. The blur level above the dash line is seen,
while blur levels below are unseen.

in Fig. 6. We also visualize the subjective comparisons on
hybrid-distorted image restoration in Fig. 7.



Input ERM DIL 𝒔𝒇 DIL 𝒑𝒔 GT

29.60 dB 35.82 dB 36.14 dB 35.92 dB

33.97 dB 38.30 dB 39.27 dB 39.12 dB

33.90 dB 40.90 dB 44.62 dB 44.79 dB

27.71 dB 38.43 dB 39.19 dB 38.92 dB

Figure 5. Visual comparison of the commonly-used ERM and DIL on real image denoising task. The top samples are from DND [15]
while the bottom samples are from SIDD [1]. Brightening the third line for a better view.

Input DIL𝒔𝒇 DIL𝒑𝒔ERM GT

Figure 6. Visual comparison of the commonly-used ERM, our DILsf and DILps on image deraining task.
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Figure 7. Visual comparison of the commonly-used ERM and DIL on hybrid distortion removal task. Here, we show restoration results on
the mild distortion level, which is the unseen distortion level for the restoration network.
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