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Figure 1. Continuous upsampling results of LeRF. More results are available on our project page: https://lerf.pages.dev.

In this supplementary document and the accompanying
supplementary videos, we include the following contents:

* continuous resampling results (Sec. 1),

* more comparisons (Sec. 2),

¢ the details on LUT acceleration, evaluation, and imple-
mentation (Sec. 3),

* more quantitative and qualitative results (Sec. 4).

1. Continuous Resampling Results

In Fig. 1, we provide an example of continuous up-
sampling results of LeRF. Besides, in our project page
(https://lerf.pages.dev), we present two com-
parison videos of continuous resampling results. In the first
one, we compare the visual results of LeRF and bicubic
side-by-side for a continuous upsampling range, i.e., from
x1 to x8. In the second one, we compare the continu-
ous resampling results of LeRF and bicubic for general ho-
mographic transformations, including asymmetric upsam-
pling, downsampling, sheering, and rotation. As can be
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RunTime MACs | x2  x3 x4

LeRF (Ours) 110 57.94M 3571 32.02 30.15
SR-LUT (x2 oversample) 149 57.66M 35.53 3191 29.75
SR-LUT (x4 oversample) 207 74.94M 35.60 31.94 29.80

Table 1. Performance and efficiency comparison with a cascaded
oversampling solution. RunTime in ms and evaluated on a mobile
phone. Performance reported in PSNR for x2, x3, and x4 up-
sampling on the Set5 dataset.

seen, LeRF produces more visually pleasing results than the
widely-used bicubic interpolation.

2. More Comparisons

Comparison with cascaded oversampling solutions.
We compare LeRF with alternative solutions to achieve
arbitrary-scale upsampling, where an input image is firstly
over-upsampled to x2 or x4 scale by a trained SR-LUT,
and then downsampled to the actual target resolution with
bicubic interpolation. As listed in Table 1, these cascaded
oversampling solutions yield comparable performance, but
at a cost of waste of computational resources due to over-
sampling.
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Figure 2. Qualitative comparison with rule-based adaptive resampling methods for x 2 upsampling. We also include bicubic as a compan-
ion. From top to bottom, the example images are: comic (Setl4), ppt3 (Setl4), img035 (Urban100), and KyokugenCyclone (Mangal(9).

Best view on screen and in color.

Comparison with rule-based adpative resampling meth-
ods. In Fig. 2, we compare LeRF with two rule-based
adaptive resampling methods, i.e., NEDI [6] and SKR [9].
They estimate the resampling weights according to hand-
designed rules based on local gradients. As can be seen,
LeRF obtains better visual quality than these rule-based
adaptive resampling methods, showing the advantage of ex-
tracting structural priors in a learning-based way.

3. More Implementation Details

LUT acceleration. Here, we review the detailed process of
LUT acceleration in SR-LUT [5]. As illustrated in Fig.3,
in SR-LUT, the authors first train a deep super-resolution
network (SRNet). Then, they traverse all possible input
LR patches, i.e., [Iy, I1, I2, I3], and pre-compute the cor-
responding HR patches, i.e., [Vy, V1, Va, V3]. The anchor
pixel I and its surrounding pixels (12, I3, and 1), are saved
as the index, while the corresponding HR patch is saved as
the value. Finally, at inference time, the HR predictions are
calculated by finding the nearest index to the query LR pix-
els in indices and retrieving corresponding saved HR values.
The four HR pixels replace the original anchor pixel Iy, thus
resulting in X2 upsampling of an input image. In SR-LUT,
the LUT is uniformly sampled with an interval of 2* to re-
duce storage. In our work, we follow the above process to

accelerate the DNN with LUT. Differently, instead of sav-
ing HR patches, our LUTs save the hyper-parameters that
determine the orientations of resampling functions. For our
DNN, each branch can be treated as an SRNet and thus ac-
celerated by a LUT with the same indexing pattern. In total,
we use three LUTs for the pre-filter stage (S, C, and X pat-
terns) and six LUTS for hyper-parameter prediction (.S, S’,
C, ', X, and X' patterns). We adopt the rotation ensemble
strategy in the pre-filter stage, and the proposed directional
ensemble strategy for hyper-parameter prediction.

Efficiency evaluation. For interpolation methods, SR-
LUT* and LeRF, the running time is evaluated on a One-
Plus 7 Pro mobile phone with a Qualcomm Snapdragon 855
CPU. For RAISR* [7], Meta-SR [4], and LIIF [2], that is
evaluated on a desktop computer with an Intel Xeon Gold
6278C 2.60GHz CPU. We implement LeRF and interpola-
tion methods under the Java IntStream.parallel() API,
and the number of parallel threads is set to the total pixels
(i.e., h x w) of an input image. We estimate the MACs
of LeRF and interpolation methods based on the size of
the target image and the operations needed per target pixel.
Specifically, for the exp() operation in LeRF and sinc()
operation in Lanczos interpolation, we count their MAC as
4, according to the theoretical estimation in [ 1] and the dec-
imal precision of float type number. For LeRF, the LUT
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Figure 3. The detailed process of LUT acceleration in SR-LUT [5]. (a) In SR-LUT, the authors first train an SRNet. (b) Then, they traverse
all possible input LR patches, pre-compute corresponding HR patches, and save them as index-value pairs in a LUT. (c) At inference
time, HR patches are predicted by finding the nearest indices to the query LR pixels and retrieving the saved HR values. r denotes the
upsampling scale (r = 2 here). This figure is reproduced according to Fig. 2 in the SR-LUT paper [5].

execution and interpolation with the predicted resampling
functions account for 17.39M and 40.55M MAC:s, respec-
tively. The LUT execution mainly involves int type opera-
tions, which contributes to efficiency advantage. For DNN-
based methods, we calculate their MACs with torchinfo!.
We estimate the LUT size according to Table 1 in the SR-
LUT paper [5].

Implementation. For interpolation methods, we adopt the
implementation” presented in [8]. We adopt the official im-
plementations of SR-LUT?, Meta-SR*, and LIIF°. We adopt
the third-party RAISR implementation® presented in [3].

4. More Results

To further quantitatively evaluate the perceptual quality
of LeRF, we adopt the LPIPS [10] metric and list the re-
sults for upsampling in Table 2. As can be seen, LeRF
outperforms interpolation methods by a large margin and
achieves comparable (sometimes even better) performance
with DNN-based methods, showing its clear advantage in
perceptual quality.

Besides, in Table 3, we provide the SSIM results for
LeRF and comparison methods for arbitrary-scale upsam-
pling. Although RAISR* performs slightly better than our
method occasionally, the fused results from multiple mod-
els are hard to achieve in practice. In Fig. 4 and Fig. 5, we
provide additional examples of qualitative comparison.
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Method Set5 Setl4 BSDS100 Urban100 Mangal09
X2 x3 x4 %2 x3 x4 X2 x3 x4 X2 x3 x4 x2 x3 x4

Bilinear 0.1674 0.2421 0.3572 0.2444 03433 0.4645 0.3181 0.4228 0.5503 0.2640 0.3764 0.4965 0.1502 0.2403 0.3481
Bicubic 0.1261 0.2508 0.3461 0.1958 03603 0.4573 0.2643 0.4451 0.5432 0.2203 0.3947 0.4932 0.1107 0.2416 0.3340
Lanczos3 0.1349  0.2527 0.3501 0.2177 03649 0.4628 0.2968 0.4538 0.5530 0.2476 0.3953 0.4940 0.1209 0.2389 0.3320
RAISR*[7]  0.0784 0.1669 0.2421 0.1418 02784 0.3588 0.1984 0.3651 0.4397 0.1567 0.3062 0.3915 0.0582 0.1591 0.2461
SR-LUT*[5] 0.0882 0.2206 0.3186 0.1499 0.3364 0.4359 0.2138 0.4197 0.5177 0.1857 0.3953 0.4728 0.0671 0.1877 0.2675
LeRF (Ours)  0.0504 0.1062 0.1830 0.0879 0.2022 0.3023 0.1472 0.2906 0.3995 0.1096 0.2377 0.3374 0.0325 0.0992 0.1699
MetaSR [4] 0.0576 0.1213 0.1706 0.0952 0.2083 0.2886 0.1490 0.2857 0.3766 0.0599 0.1452 0.2179 0.0236 0.0643 0.1052
LIIF [2] 0.0583 0.1223 0.1714 0.0953 0.2090 0.2918 0.1557 0.2907 0.3793 0.0622 0.1470 0.2216 0.0246 0.0656 0.1083

Table 2. Quantitative comparison in LPIPS for arbitrary-scale upsampling. * denotes that we combine fixed-scale super-resolution methods
with bicubic interpolation to achieve arbitrary-scale upsampling. Lower is better. The best results are highlighted.

Method Set5 Setl4 BSDS100 Urban100 Mangal09

Xx1.5 1.5 x2.0 x2.0 x1.5 x1.5 2.0 2.0 x1.5 x1.5 x2.0 x2.0 x1.5 1.5 2.0 x2.0 x1.5 x1.5 x2.0 x2.0

X1.5 x2.0 %2.0 x2.4 X1.5 x2.0 x2.0 x2.4 X1.5 X2.0 X2.0 x2.4 X1.5 x2.0 %2.0 x2.4 X1.5 x2.0 x2.0 x2.4
Nearest 0.9188 0.9086 0.9001 0.8747 0.8774 0.8631 0.8466 0.8168 0.8626 0.8456 0.8255 0.7944 0.8595 0.8405 0.8213 0.7871 0.9281 0.9187 0.9103 0.8829
Bilinear 0.9491 0.9287 0.9120 0.8991 0.9052 0.8745 0.8411 0.8240 0.8868 0.8497 0.8110 0.7919 0.8844 0.8451 0.8094 0.7886 0.9573 0.9327 0.9132 0.8963
Bicubic 0.9621 09446 0.9306 09174 09277 0.9004 0.8703 0.8515 0.9142 0.8802 0.8440 0.8218 09102 0.8741 0.8410 0.8173 0.9718 0.9514 0.9353 0.9175
Lanczos2 0.9624  0.9450 0.9309 0.9176 0.9283 0.9012 0.8712 0.8522 0.9150 0.8811 0.8451 0.8227 009110 0.8750 0.8419 0.8180 0.9722 0.9519 0.9359 0.9179
Lanczos3 0.9666  0.9499 0.9366 0.9234 0.9359 0.9096 0.8804 0.8614 0.9245 0.8911 0.8554 0.8327 009194 0.8836 0.8509 0.8268 0.9772 0.9578 0.9428 0.9246
RAISR* [7] 0.9516 0.9496 0.9481 0.9266 0.9121 0.9051 0.8990 0.8701 0.8987 0.8875 0.8787 0.8448 0.8956 0.8872 0.8831 0.8423 0.9621 0.9599 0.9593 0.9299
SR-LUT* [5] 0.9686 0.9528 0.9404 0.9278 0.9416 0.9164 0.8890 0.8707 0.9349 0.9043 0.8707 0.8490 0.9280 0.8945 0.8633 0.8399 0.9765 0.9581 0.9441 0.9263
LeRF (Ours) ~ 0.9702 0.9574 0.9474 0.9376 0.9467 0.9243 0.8999 0.8830 0.9391 0.9104 0.8789 0.8580 0.9408 0.9117 0.8846 0.8626 0.9800 0.9676 0.9580 0.9462
MetaSR [4] 0.9785 - 0.9610 - 0.9602 - 0.9204 - 0.9544 - 0.9009 - 0.9653 - 0.9360 - 0.9904 - 0.9872 -
LIIF [2] 0.9784 0.9685 0.9611 0.9538 0.9600 0.9416 0.9210 0.9074 0.9545 0.9290 0.9011 0.8823 0.9692 0.9505 0.9352 0.9206 0.9903 0.9835 0.9781 0.9718
Method Set5 Setl4 BSDS100 Urban100 Mangal09

x2.0 x3.0 x3.0 x4.0 %2.0 x3.0 x3.0 x4.0 x2.0 x3.0 x3.0 x4.0 x2.0 x3.0 x3.0 x4.0 %2.0 %3.0 x3.0 x4.0

x3.0 x3.0 x4.0 x4.0 x3.0 x3.0 x4.0 x4.0 x3.0 x3.0 x4.0 x4.0 x3.0 x3.0 x4.0 x4.0 x3.0 x3.0 x4.0 x4.0
Nearest 0.8507 0.8128 0.7701 0.7372 0.7904 0.7355 0.6952 0.6553 0.7665 0.7082 0.6701 0.6307 0.7564 0.7006 0.6562 0.6166 0.8572 0.8172 0.7748 0.7420
Bilinear 0.8774 0.8512 0.8155 0.7885 0.7987 0.7556 0.7185 0.6824 0.7652 0.7197 0.6837 0.6479 0.7591 0.7152 0.6730 0.6363 0.8706 0.8390 0.7984 0.7677
Bicubic 0.8951 0.8686 0.8355 0.8106 0.8241 0.7765 0.7410 0.7056 0.7916 0.7399 0.7049 0.6694 0.7848 0.7359 0.6954 0.6592 0.8902 0.8572 0.8183 0.7888
Lanczos2 0.8952  0.8687 0.8355 0.8107 0.8247 0.7768 0.7412 0.7058 0.7923 0.7402 0.7053 0.6698 0.7854 0.7362 0.6956 0.6594 0.8905 0.8574 0.8184 0.7889
Lanczos3 0.9010 0.8750 0.8413 0.8168 0.8338 0.7855 0.7493 0.7130 0.8018 0.7488 0.7130 0.6763 0.7940 0.7443 0.7030 0.6659 0.8967 0.8637 0.8238 0.7939
RAISR*[7]  0.9074 0.8968 0.8536 0.8431 0.8311 0.8087 0.7584 0.7357 0.8000 0.7729 0.7212 0.6963 0.8013 0.7796 0.7179 0.6983 0.9039 0.8918 0.8370 0.8240
SR-LUT*[5] 0.9061 0.8812 0.8498 0.8251 0.8442 0.7976 0.7620 0.7256 0.8188 0.7663 0.7298 0.6920 0.8076 0.7582 0.7168 0.6791 0.8985 0.8660 0.8261 0.7971
LeRF (Ours)  0.9189 0.8980 0.8732 0.8548 0.8573 0.8126 0.7816 0.7475 0.8278 0.7763 0.7412 0.7047 0.8309 0.7844 0.7462 0.7114 0.9246 0.9008 0.8708 0.8482
MetaSR [4] - 0.9295 - 0.8985 - 0.8466 - 0.7876 - 0.8089 - 0.7416 - 0.8672 - 0.8049 - 0.9491 - 0.9175
LIIF [2] 0.9422 09291 09114 0.8981 0.8859 0.8472 0.8189 0.7878 0.8558 0.8101 0.7769 0.7425 0.8979 0.8664 0.8335 0.8043 0.9612 0.9487 0.9310 0.9169

Table 3. Quantitative comparison in SSIM for arbitrary-scale upsampling. - denotes upsampling 7, times along the short side and r.,
times along the long side. * denotes that we combine fixed-scale super-resolution methods with bicubic interpolation to achieve arbitrary-
scale upsampling. The best and second best results are highlighted and underlined.
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Figure 4. Additional qualitative comparison for arbitrary-scale upsampling. From top to bottom, the example images are: TennenSenshiG
(Mangal09), img042 (Urabn100), img072 (Urban100), img048 (Urabn100), 102061 (BSDS100), img008 (Urban100), and DollGuan
(Mangal09). Best view on screen and in color.
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Figure 5. Additional qualitative comparison for arbitrary-scale upsampling. From top to bottom, the example images are: Hamlet
(Mangal09), TapkunNoTanteisitsu (Mangal09), TouyouKidan (Mangal09), 182053 (BSDS100), Arisa (Mang109), 253027 (BSDS100),
and TetsuSan (Mangal(09). Best view on screen and in color.
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