
Learning Steerable Function for Efficient Image Resampling
Supplementary Document

Jiacheng Li1* Chang Chen2* Wei Huang1

Zhiqiang Lang2 Fenglong Song2 Youliang Yan2 Zhiwei Xiong1†

1University of Science and Technology of China 2Huawei Noah’s Ark Lab
{jclee,weih527}@mail.ustc.edu.cn zwxiong@ustc.edu.cn

{chenchang25,langzhiqiang,songfenglong,yanyouliang}@huawei.com

×4.0
×3.5

×3.0
×2.5

×2.0
×1.5

LR

Figure 1. Continuous upsampling results of LeRF. More results are available on our project page: https://lerf.pages.dev.

In this supplementary document and the accompanying
supplementary videos, we include the following contents:

• continuous resampling results (Sec. 1),
• more comparisons (Sec. 2),
• the details on LUT acceleration, evaluation, and imple-

mentation (Sec. 3),
• more quantitative and qualitative results (Sec. 4).

1. Continuous Resampling Results
In Fig. 1, we provide an example of continuous up-

sampling results of LeRF. Besides, in our project page
(https://lerf.pages.dev), we present two com-
parison videos of continuous resampling results. In the first
one, we compare the visual results of LeRF and bicubic
side-by-side for a continuous upsampling range, i.e., from
×1 to ×8. In the second one, we compare the continu-
ous resampling results of LeRF and bicubic for general ho-
mographic transformations, including asymmetric upsam-
pling, downsampling, sheering, and rotation. As can be

*Equal contribution. †Corresponding author. This work was done when
Jiacheng Li was a research intern at Huawei Noah’s Ark Lab.

RunTime MACs ×2 ×3 ×4

LeRF (Ours) 110 57.94M 35.71 32.02 30.15
SR-LUT (×2 oversample) 149 57.66M 35.53 31.91 29.75
SR-LUT (×4 oversample) 207 74.94M 35.60 31.94 29.80

Table 1. Performance and efficiency comparison with a cascaded
oversampling solution. RunTime in ms and evaluated on a mobile
phone. Performance reported in PSNR for ×2, ×3, and ×4 up-
sampling on the Set5 dataset.

seen, LeRF produces more visually pleasing results than the
widely-used bicubic interpolation.

2. More Comparisons

Comparison with cascaded oversampling solutions.
We compare LeRF with alternative solutions to achieve
arbitrary-scale upsampling, where an input image is firstly
over-upsampled to ×2 or ×4 scale by a trained SR-LUT,
and then downsampled to the actual target resolution with
bicubic interpolation. As listed in Table 1, these cascaded
oversampling solutions yield comparable performance, but
at a cost of waste of computational resources due to over-
sampling.

1

https://lerf.pages.dev
https://lerf.pages.dev


HR GT Bicubic NEDI SKR LeRF (Ours)

HR GT Bicubic NEDI SKR LeRF (Ours)

HR GT Bicubic NEDI SKR LeRF (Ours)

HR GT Bicubic NEDI SKR LeRF (Ours)

Figure 2. Qualitative comparison with rule-based adaptive resampling methods for ×2 upsampling. We also include bicubic as a compan-
ion. From top to bottom, the example images are: comic (Set14), ppt3 (Set14), img035 (Urban100), and KyokugenCyclone (Manga109).
Best view on screen and in color.

Comparison with rule-based adpative resampling meth-
ods. In Fig. 2, we compare LeRF with two rule-based
adaptive resampling methods, i.e., NEDI [6] and SKR [9].
They estimate the resampling weights according to hand-
designed rules based on local gradients. As can be seen,
LeRF obtains better visual quality than these rule-based
adaptive resampling methods, showing the advantage of ex-
tracting structural priors in a learning-based way.

3. More Implementation Details
LUT acceleration. Here, we review the detailed process of
LUT acceleration in SR-LUT [5]. As illustrated in Fig.3,
in SR-LUT, the authors first train a deep super-resolution
network (SRNet). Then, they traverse all possible input
LR patches, i.e., [I0, I1, I2, I3], and pre-compute the cor-
responding HR patches, i.e., [V0, V1, V2, V3]. The anchor
pixel I0 and its surrounding pixels (I2, I3, and I4), are saved
as the index, while the corresponding HR patch is saved as
the value. Finally, at inference time, the HR predictions are
calculated by finding the nearest index to the query LR pix-
els in indices and retrieving corresponding saved HR values.
The four HR pixels replace the original anchor pixel I0, thus
resulting in ×2 upsampling of an input image. In SR-LUT,
the LUT is uniformly sampled with an interval of 24 to re-
duce storage. In our work, we follow the above process to

accelerate the DNN with LUT. Differently, instead of sav-
ing HR patches, our LUTs save the hyper-parameters that
determine the orientations of resampling functions. For our
DNN, each branch can be treated as an SRNet and thus ac-
celerated by a LUT with the same indexing pattern. In total,
we use three LUTs for the pre-filter stage (S, C, and X pat-
terns) and six LUTs for hyper-parameter prediction (S, S′,
C, C ′, X , and X ′ patterns). We adopt the rotation ensemble
strategy in the pre-filter stage, and the proposed directional
ensemble strategy for hyper-parameter prediction.

Efficiency evaluation. For interpolation methods, SR-
LUT* and LeRF, the running time is evaluated on a One-
Plus 7 Pro mobile phone with a Qualcomm Snapdragon 855
CPU. For RAISR* [7], Meta-SR [4], and LIIF [2], that is
evaluated on a desktop computer with an Intel Xeon Gold
6278C 2.60GHz CPU. We implement LeRF and interpola-
tion methods under the Java IntStream.parallel() API,
and the number of parallel threads is set to the total pixels
(i.e., h × w) of an input image. We estimate the MACs
of LeRF and interpolation methods based on the size of
the target image and the operations needed per target pixel.
Specifically, for the exp() operation in LeRF and sinc()
operation in Lanczos interpolation, we count their MAC as
4, according to the theoretical estimation in [1] and the dec-
imal precision of float type number. For LeRF, the LUT



SR-LUT

SR-LUT

⋯
⋯

Query LR 
pixel

Predicted HR 
patch

(b) Traversing and pre-computing index-value pairs (c) LUT retrieval instead of network computation(a) Training SRNet

2×2

Value

[𝑽𝟎, 𝑽𝟏, 𝑽𝟐, 𝑽𝟑]LUT[𝑰𝟎, 𝑰𝟏, 𝑰𝟐, 𝑰𝟑]

C
on

v2
d,

 R
eL

U

C
on

v2
d,

 R
eL

U

C
on

v2
d,

 R
eL

U

Pi
xe

lS
hu

ffl
e

⋯

kernel:

channel:
1×1 1×1

1→64 64→64 64→𝑟!

Index

Finding the 
nearest index

Retrieving saved 
value

𝑽𝟎 𝑽𝟏
𝑽𝟐 𝑽𝟑

𝑰𝟎 𝑰𝟏
𝑰𝟐 𝑰𝟑

𝑰𝟎 𝑰𝟏
𝑰𝟐 𝑰𝟑

𝑽&𝟎 𝑽&𝟏
𝑽&𝟐 𝑽&𝟑

SRNet

SRNet

Figure 3. The detailed process of LUT acceleration in SR-LUT [5]. (a) In SR-LUT, the authors first train an SRNet. (b) Then, they traverse
all possible input LR patches, pre-compute corresponding HR patches, and save them as index-value pairs in a LUT. (c) At inference
time, HR patches are predicted by finding the nearest indices to the query LR pixels and retrieving the saved HR values. r denotes the
upsampling scale (r = 2 here). This figure is reproduced according to Fig. 2 in the SR-LUT paper [5].

execution and interpolation with the predicted resampling
functions account for 17.39M and 40.55M MACs, respec-
tively. The LUT execution mainly involves int type opera-
tions, which contributes to efficiency advantage. For DNN-
based methods, we calculate their MACs with torchinfo1.
We estimate the LUT size according to Table 1 in the SR-
LUT paper [5].
Implementation. For interpolation methods, we adopt the
implementation2 presented in [8]. We adopt the official im-
plementations of SR-LUT3, Meta-SR4, and LIIF5. We adopt
the third-party RAISR implementation6 presented in [3].

4. More Results
To further quantitatively evaluate the perceptual quality

of LeRF, we adopt the LPIPS [10] metric and list the re-
sults for upsampling in Table 2. As can be seen, LeRF
outperforms interpolation methods by a large margin and
achieves comparable (sometimes even better) performance
with DNN-based methods, showing its clear advantage in
perceptual quality.

Besides, in Table 3, we provide the SSIM results for
LeRF and comparison methods for arbitrary-scale upsam-
pling. Although RAISR* performs slightly better than our
method occasionally, the fused results from multiple mod-
els are hard to achieve in practice. In Fig. 4 and Fig. 5, we
provide additional examples of qualitative comparison.

1https://github.com/TylerYep/torchinfo
2https://github.com/assafshocher/ResizeRight
3https://github.com/yhjo09/SR-LUT
4https://github.com/XuecaiHu/Meta-SR-Pytorch
5https://github.com/yinboc/liif
6https://github.com/JalaliLabUCLA/Jalali-Lab-

Implementation-of-RAISR

References
[1] J. M. Borwein and P. B. Borwein. On the complexity of

familiar functions and numbers. SIAM Review, 30(4):589–
601, 1988. 2

[2] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. In CVPR, 2021. 2, 4

[3] Sifeng He and Bahram Jalali. Brain MRI image super res-
olution using phase stretch transform and transfer learning.
arxiv, 1807.11643, 2018. 3

[4] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tie-
niu Tan, and Jian Sun. Meta-sr: A magnification-arbitrary
network for super-resolution. In CVPR, 2019. 2, 4

[5] Younghyun Jo and Seon Joo Kim. Practical single-image
super-resolution using look-up table. In CVPR, 2021. 2, 3, 4

[6] Xin Li and Michael T. Orchard. New edge-directed inter-
polation. IEEE Trans. Image Process., 10(10):1521–1527,
2001. 2

[7] Yaniv Romano, John Isidoro, and Peyman Milanfar. RAISR:
rapid and accurate image super resolution. IEEE Trans.
Computational Imaging, 3(1):110–125, 2017. 2, 4

[8] Assaf Shocher, Ben Feinstein, Niv Haim, and Michal Irani.
From discrete to continuous convolution layers. arxiv,
2006.11120, 2020. 3

[9] Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel
regression for image processing and reconstruction. IEEE
Trans. Image Process., 16(2):349–366, 2007. 2

[10] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, 2018. 3

https://github.com/TylerYep/torchinfo
https://github.com/assafshocher/ResizeRight
https://github.com/yhjo09/SR-LUT
https://github.com/XuecaiHu/Meta-SR-Pytorch
https://github.com/yinboc/liif
https://github.com/JalaliLabUCLA/Jalali-Lab-Implementation-of-RAISR
https://github.com/JalaliLabUCLA/Jalali-Lab-Implementation-of-RAISR


Method
Set5 Set14 BSDS100 Urban100 Manga109

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

Bilinear 0.1674 0.2421 0.3572 0.2444 0.3433 0.4645 0.3181 0.4228 0.5503 0.2640 0.3764 0.4965 0.1502 0.2403 0.3481
Bicubic 0.1261 0.2508 0.3461 0.1958 0.3603 0.4573 0.2643 0.4451 0.5432 0.2203 0.3947 0.4932 0.1107 0.2416 0.3340
Lanczos3 0.1349 0.2527 0.3501 0.2177 0.3649 0.4628 0.2968 0.4538 0.5530 0.2476 0.3953 0.4940 0.1209 0.2389 0.3320
RAISR* [7] 0.0784 0.1669 0.2421 0.1418 0.2784 0.3588 0.1984 0.3651 0.4397 0.1567 0.3062 0.3915 0.0582 0.1591 0.2461
SR-LUT* [5] 0.0882 0.2206 0.3186 0.1499 0.3364 0.4359 0.2138 0.4197 0.5177 0.1857 0.3953 0.4728 0.0671 0.1877 0.2675
LeRF (Ours) 0.0504 0.1062 0.1830 0.0879 0.2022 0.3023 0.1472 0.2906 0.3995 0.1096 0.2377 0.3374 0.0325 0.0992 0.1699

MetaSR [4] 0.0576 0.1213 0.1706 0.0952 0.2083 0.2886 0.1490 0.2857 0.3766 0.0599 0.1452 0.2179 0.0236 0.0643 0.1052
LIIF [2] 0.0583 0.1223 0.1714 0.0953 0.2090 0.2918 0.1557 0.2907 0.3793 0.0622 0.1470 0.2216 0.0246 0.0656 0.1083

Table 2. Quantitative comparison in LPIPS for arbitrary-scale upsampling. * denotes that we combine fixed-scale super-resolution methods
with bicubic interpolation to achieve arbitrary-scale upsampling. Lower is better. The best results are highlighted.

Method
Set5 Set14 BSDS100 Urban100 Manga109

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

Nearest 0.9188 0.9086 0.9001 0.8747 0.8774 0.8631 0.8466 0.8168 0.8626 0.8456 0.8255 0.7944 0.8595 0.8405 0.8213 0.7871 0.9281 0.9187 0.9103 0.8829
Bilinear 0.9491 0.9287 0.9120 0.8991 0.9052 0.8745 0.8411 0.8240 0.8868 0.8497 0.8110 0.7919 0.8844 0.8451 0.8094 0.7886 0.9573 0.9327 0.9132 0.8963
Bicubic 0.9621 0.9446 0.9306 0.9174 0.9277 0.9004 0.8703 0.8515 0.9142 0.8802 0.8440 0.8218 0.9102 0.8741 0.8410 0.8173 0.9718 0.9514 0.9353 0.9175
Lanczos2 0.9624 0.9450 0.9309 0.9176 0.9283 0.9012 0.8712 0.8522 0.9150 0.8811 0.8451 0.8227 0.9110 0.8750 0.8419 0.8180 0.9722 0.9519 0.9359 0.9179
Lanczos3 0.9666 0.9499 0.9366 0.9234 0.9359 0.9096 0.8804 0.8614 0.9245 0.8911 0.8554 0.8327 0.9194 0.8836 0.8509 0.8268 0.9772 0.9578 0.9428 0.9246
RAISR* [7] 0.9516 0.9496 0.9481 0.9266 0.9121 0.9051 0.8990 0.8701 0.8987 0.8875 0.8787 0.8448 0.8956 0.8872 0.8831 0.8423 0.9621 0.9599 0.9593 0.9299
SR-LUT* [5] 0.9686 0.9528 0.9404 0.9278 0.9416 0.9164 0.8890 0.8707 0.9349 0.9043 0.8707 0.8490 0.9280 0.8945 0.8633 0.8399 0.9765 0.9581 0.9441 0.9263
LeRF (Ours) 0.9702 0.9574 0.9474 0.9376 0.9467 0.9243 0.8999 0.8830 0.9391 0.9104 0.8789 0.8580 0.9408 0.9117 0.8846 0.8626 0.9800 0.9676 0.9580 0.9462

MetaSR [4] 0.9785 - 0.9610 - 0.9602 - 0.9204 - 0.9544 - 0.9009 - 0.9653 - 0.9360 - 0.9904 - 0.9872 -
LIIF [2] 0.9784 0.9685 0.9611 0.9538 0.9600 0.9416 0.9210 0.9074 0.9545 0.9290 0.9011 0.8823 0.9692 0.9505 0.9352 0.9206 0.9903 0.9835 0.9781 0.9718

Method
Set5 Set14 BSDS100 Urban100 Manga109

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

Nearest 0.8507 0.8128 0.7701 0.7372 0.7904 0.7355 0.6952 0.6553 0.7665 0.7082 0.6701 0.6307 0.7564 0.7006 0.6562 0.6166 0.8572 0.8172 0.7748 0.7420
Bilinear 0.8774 0.8512 0.8155 0.7885 0.7987 0.7556 0.7185 0.6824 0.7652 0.7197 0.6837 0.6479 0.7591 0.7152 0.6730 0.6363 0.8706 0.8390 0.7984 0.7677
Bicubic 0.8951 0.8686 0.8355 0.8106 0.8241 0.7765 0.7410 0.7056 0.7916 0.7399 0.7049 0.6694 0.7848 0.7359 0.6954 0.6592 0.8902 0.8572 0.8183 0.7888
Lanczos2 0.8952 0.8687 0.8355 0.8107 0.8247 0.7768 0.7412 0.7058 0.7923 0.7402 0.7053 0.6698 0.7854 0.7362 0.6956 0.6594 0.8905 0.8574 0.8184 0.7889
Lanczos3 0.9010 0.8750 0.8413 0.8168 0.8338 0.7855 0.7493 0.7130 0.8018 0.7488 0.7130 0.6763 0.7940 0.7443 0.7030 0.6659 0.8967 0.8637 0.8238 0.7939
RAISR* [7] 0.9074 0.8968 0.8536 0.8431 0.8311 0.8087 0.7584 0.7357 0.8000 0.7729 0.7212 0.6963 0.8013 0.7796 0.7179 0.6983 0.9039 0.8918 0.8370 0.8240
SR-LUT* [5] 0.9061 0.8812 0.8498 0.8251 0.8442 0.7976 0.7620 0.7256 0.8188 0.7663 0.7298 0.6920 0.8076 0.7582 0.7168 0.6791 0.8985 0.8660 0.8261 0.7971
LeRF (Ours) 0.9189 0.8980 0.8732 0.8548 0.8573 0.8126 0.7816 0.7475 0.8278 0.7763 0.7412 0.7047 0.8309 0.7844 0.7462 0.7114 0.9246 0.9008 0.8708 0.8482

MetaSR [4] - 0.9295 - 0.8985 - 0.8466 - 0.7876 - 0.8089 - 0.7416 - 0.8672 - 0.8049 - 0.9491 - 0.9175
LIIF [2] 0.9422 0.9291 0.9114 0.8981 0.8859 0.8472 0.8189 0.7878 0.8558 0.8101 0.7769 0.7425 0.8979 0.8664 0.8335 0.8043 0.9612 0.9487 0.9310 0.9169

Table 3. Quantitative comparison in SSIM for arbitrary-scale upsampling. rh
rw

denotes upsampling rh times along the short side and rw
times along the long side. * denotes that we combine fixed-scale super-resolution methods with bicubic interpolation to achieve arbitrary-
scale upsampling. The best and second best results are highlighted and underlined.



×1.5
×1.5

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (25.98/0.9132) (27.61/0.9375) (28.56/0.9467) (27.48/0.9219) (28.44/0.9498) (31.41/0.9639)

×1.5
×1.5

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (30.86/0.9393) (32.40/0.9558) (33.14/0.9614) (31.90/0.9481) (33.68/0.9569) (35.14/0.9684)

×1.5
×2.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (20.45/0.8320) (21.48/0.8678) (21.94/0.8784) (22.39/0.8840) (22.33/0.8872) (24.48/0.9325)

×1.5
×2.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (21.32/0.8475) (22.23/0.8801) (22.65/0.8915) (23.34/0.9069) (23.12/0.9052) (24.84/0.9344)

×2.0
×2.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (27.43/0.8607) (28.04/0.8715) (28.24/0.8781) (28.71/0.8902) (28.64/0.8886) (29.12/0.8945)

×2.0
×2.4

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (21.67/0.6814) (22.35/0.7309) (22.65/0.7499) (23.17/0.7794) (23.07/0.7853) (23.75/0.8062)

×2.0
×2.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (27.65/0.9028) (29.16/0.9271) (29.96/0.9355) (30.30/0.9424) (30.60/0.9416) (32.27/0.9539)

Figure 4. Additional qualitative comparison for arbitrary-scale upsampling. From top to bottom, the example images are: TennenSenshiG
(Manga109), img042 (Urabn100), img072 (Urban100), img048 (Urabn100), 102061 (BSDS100), img008 (Urban100), and DollGuan
(Manga109). Best view on screen and in color.



×2.0
×3.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (24.92/0.9053) (25.99/0.9219) (26.52/0.9271) (27.10/0.9273) (26.28/0.9295) (29.76/0.9609)

×2.0
×3.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (29.30/0.9305) (30.41/0.9418) (30.94/0.9439) (31.40/0.9445) (31.47/0.9409) (33.75/0.9621)

×3.0
×3.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (24.20/0.8311) (24.96/0.8494) (25.37/0.8553) (27.35/0.8899) (25.32/0.8603) (28.00/0.8962)

×3.0
×4.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (23.47/0.7002) (23.77/0.7179) (23.87/0.7227) (23.79/0.7359) (24.11/0.7408) (24.44/0.7611)

×3.0
×4.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (25.81/0.8529) (26.66/0.8709) (27.09/0.8762) (27.71/0.8896) (27.43/0.8815) (29.67/0.9188)

×4.0
×4.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (20.96/0.6095) (21.30/0.6333) (21.41/0.6417) (21.59/0.6596) (21.61/0.6640) (21.84/0.6708)

×4.0
×4.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* Ours

(PSNR/SSIM) (20.69/0.8316) (21.07/0.8381) (20.70/0.8321) (22.22/0.8686) (19.64/0.8129) (23.73/0.9062)

Figure 5. Additional qualitative comparison for arbitrary-scale upsampling. From top to bottom, the example images are: Hamlet
(Manga109), TapkunNoTanteisitsu (Manga109), TouyouKidan (Manga109), 182053 (BSDS100), Arisa (Mang109), 253027 (BSDS100),
and TetsuSan (Manga109). Best view on screen and in color.


	. Continuous Resampling Results
	. More Comparisons
	. More Implementation Details
	. More Results

