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The supplementary material is organized as follows.
Sec. A describes the detailed configurations used in Style-
GAN?2 interpretation. Sec. B provides the network structure
of NeRF used in Lift3D. Sec. C introduces the sampling pa-
rameters used in composition. Sec. D verifies the multi-view
consistency of our 3D generation framework.

A. Interpretation of StyleGAN2

We derive disentanglement of latent space in Style-
GAN?2 [6] from GANSpace [5]. We disentangle StyleGAN2
and identify the first eight layers latents as the latents that
control the object pose and the other eight layers latents as
the latents that control the attributes except object shape. In
Lift3D, our goal is to annotate these latents with pose labels
for lifting process. We first use Blender EEVEE engine [3]
to render a ShapeNet [2] model under 200 different views P,
ranging from 0 — 360° in azimuth, and 0 — 20° in elevation.
The rendered images thus naturally contain accurate ground
truth pose labels.

With a fixed pretrained StyleGAN2 [6], we initialize
200 different latents z € R>'? from Gaussian distribution
Z € N(0,I). The latents z are mapped to w € R16%512
by the mapping network in StyleGAN2. We optimize the
latents w using Adam [7] optimizer with learning rate of
le-3 for 5000 iterations. The loss function is a simple L1
loss. After optimization, the first eight layers of latents w are
annotated with “pseudo” pose labels, as the disentanglement
and interpretation process is non-perfect.

B. Conditional NeRF

Our conditional NeRF mainly builds upon EG3D [1].
Fig. 1 depicts the detailed structure of NeRF in Lift3D. The
overall network composes two parts: the mapping network
and the synthesis network. The mapping network contains
8-layer MLPs and 16 affine transformations that maps the
randomly sampled noise latents z € R?!2 to w € R16%512,
The latents are then modulate the synthesis network to gen-
erate orthogonal tri-planes that form the axis-aligned feature
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Figure 1. Network structure of NeRF in Lift3D, which converts
latent codes to images and masks. M denotes the mapping network
that maps latents z € R512 to w € R16%%12 w are fed in AdaIN [4]
to modulate the synthesis network to map the constant input to the
tri-planes. SIREN is a single-layer MLP converts feature vector to
RGB and density value.

grid. The feature planes are of size N x N x (C' x 3), where
N = 256 denotes the spatial resolution and C' = 32 the
feature dimension. Any sampled 3D point z € R3 of vol-
umetirc rendering is projected onto the three feature planes
to retrieve its interpolated feature vector. The final SIREN-
based [13] MLP that condition on the mean of w then convert
the feature vector to the RGB and density value.

A normalized 3D bounding box [ 4] is utilized to filter out
the background sampling points. During ray casting, we uti-
lize an AABB-ray intersection algorithm [8] to find the near-
est and furthest hitting points of 3D bounding box. The same
parametrization can also be found in [9, | |]. The normalized
sampling points lied in [—1, 1] are projected to exactly cover
the content of the tri-plane for tight parametrization.

We further compare the lifting results of our shared NeRF
with isolated NeRF in Fig. 2. Given the images generated
from StyleGAN2, we ablate two lifting processes: isolating
training and joint training. The isolated NeRF is trained by
optimizing the randomly sampled tri-planes and a single-
layer SIREN to fit multi-view images. The shared NeRF is
our proposed lifting process. We jointly optimize mapping
network, synthesis network, SIREN, and a set of latents in
the same time. The learned mapping network successfully
maps randomly sampled latents z to object prior latent space
w that can decoded by synthesis network to output meaning
shape and appearance.



C. Sample Parametrization

The final sampling pose P’ can be written as
(z,y,2,1,w, h,0), where x,y, z is position of 3D bound-
ing box, [, w, h represent length, width, height of bounding
box, 6 is rotation along y axis. We detail the parametrization
of P"in Tab. 1.

Pose | Distribution Parameters
Uniform [—20m, 20m]
Gaussian = height,oc = 0.2
Uniform [5m, 45m)]
Gaussian = lmean,o = 0.5

1
Gaussian b= Wmean, o = 0.5
Gaussian = hmean,o = 0.5
Gaussian w==xm/2,0 =7m/2

T ~ne Ry

Table 1. Detailed sampling parameters during composition. lyean.,
Wmean aNd Ameaqn 18 the mean value of length, width, height of 3D
box obtained from the statistic of datasets.

D. Multi-view Consistency

We additionally compare multi-view consistency of our
3D generation framework with 3D generative model com-
posed of a 2D upsampler. We use Reprojection Error (RE)
proposed in [12] to evaluate the consistency of generated im-
ages. We randomly choose two adjacent views, then render
the images and corresponding depth map of the same object.
We use the predicted depth to warp the image from one view
to the other. The error is calculated between the predicted
image and the warped image on 10K pairs.

Method Reprojection Error
GIRAFFE [10] 0.225
GIRAFFE HD [15] 0.207
Ours 0.079

Table 2. Comparison of multi-view consistency measured by Re-
projection Error.
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Figure 3. Novel view synthesis result of our generated objects.
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