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1. More Implementation Details

In this section, we provide more detailed experimen-

tal settings on Waymo Open Dataset (WOD) [19] and

KITTI [5] datasets. For WOD [19], we adopt the two-

stage training recipe. We take CenterPoint [27] as our

RPN. We use Adam optimizer with one-cycle learning rate

policy, with max learning rate 3 × 10−3, weight decay

0.01 and momentum 0.85 to 0.95. We also follow [27] to

use the common data augmentations including global ro-

tation, global scaling, translation along the z-axis and gt-

sampling [24] to train our RPN for 20 epochs. Batch size

is set as 64 and we use 8 NVIDIA A100 GPUs. When the

model is trained in the last 5 epochs, we follow the same

fading strategy proposed in [21] to remove gt-sampling aug-

mentation. While in the two-stage refinement, we do not use

gt-sampling to train the local-to-global fusion in our Lo-

GoNet for 6 epochs. Batch size, the number of NVIDIA

A100 GPUs and the learning rate settings are the same as

the first stage. As for applying multi-frame cross-modal

fusion in LoGoNet, besides the general classification and

regression loss functions, we also add the IoU loss func-

tion [30, 32] to better account for the center-based object

detection. More specifically, an IoU score is added in the

prediction head which is supervised with the highest IoU

between the prediction and all ground truth in a smooth L1

loss, and we use it to update the predicted confidence score

during inference.

For KITTI [5], our LoGoNet is trained following the

same training configuration as Voxel-RCNN [3]. We train

the whole model end-to-end for 80 epochs where we use 8

NVIDIA A100 GPUs and batch size is set as 2 per GPU.

We adopt the one-cycle learning rate policy, with maximum

learning rate being 1 × 10−2, weight decay being 0.01 and
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Table A. Effect on the type of position information for LoF. XYZ

indicates spatial grid locations, D and R indicate the number and

the centroids of all points in each grid respectively.

Type
3D APH L2

VEH PED CYC

XYZ+D 68.14 66.69 69.07

XYZ+D+R 68.26 66.97 69.23

momentum being selected from 0.85 to 0.95. Due to the ex-

tremely imbalanced object distribution in the KITTI dataset,

we follow [2,12] to adopt the multi-modal gt-sampling dur-

ing training.

Both in WOD and KITTI, for the image branch, we do

not perform any data augmentations on images. We take

Swin-Tiny [14] as the image backbone, initialize it from the

public detection model and fix its weights during training.

2. More Quantitative Results
2.1. Type of Position Information for LoF.

Table A shows the effect of position information com-

position in local fusion. This information in each grid is

encoded by the MLP to generate grid features and fuse lo-

cal image features. We find that richer grid information

brings performance gain of 0.12%, 0.28%, and 0.15% on

APH (L2) on the vehicle, pedestrian, and cyclist, respec-

tively.

2.2. Detailed Comparison on the KITTI Test Set

We show the detailed comparison between LoGoNet and

other state-of-the-art detectors on the KITTI test set in Ta-

ble B. It shows that LoGoNet surpasses all published meth-

ods on the three classes simultaneously with 69.35 mAP.

Notably, for the first time, LoGoNet outperforms existing
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Table B. Comparison with state-of-the-art approaches for all three classes on the KITTI test set with AP being calculated at 40 recall

positions. The mAPs are averaged over the APs of easy, moderate and hard levels. Best in bold.

Method Modality
Car Pedestrian Cyclist

mAP
Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP

SECOND [24] L 83.34 72.55 65.82 73.90 48.73 40.57 37.77 42.36 71.33 52.08 45.83 56.41 57.56

PointPillars [10] L 82.58 74.31 68.99 75.29 51.45 41.92 38.89 44.09 77.10 58.65 51.92 62.56 60.65

STD [26] L 87.95 79.71 75.09 80.92 53.29 42.47 38.35 44.70 78.69 61.59 55.30 65.19 63.60

SE-SSD [31] L 91.49 82.54 77.15 83.73 - - - - - - - - -

PV-RCNN [17] L 90.25 81.43 76.82 82.83 52.17 43.29 40.29 45.25 78.60 63.71 57.65 66.65 64.91

PDV [6] L 90.43 81.86 77.36 83.21 47.80 40.56 38.46 42.27 83.04 67.81 60.46 70.44 65.30

F-PointNet [16] L+I 82.19 69.79 60.59 70.86 50.53 42.15 38.08 43.59 72.27 56.12 49.01 59.13 57.86

AVOD-FPN [9] L+I 83.07 71.76 65.73 73.52 50.46 42.27 39.04 43.92 63.76 50.55 44.93 53.08 56.84

PointPainting [20] L+I 82.11 71.70 67.08 73.63 50.32 40.97 37.84 43.05 77.63 63.78 55.89 65.77 60.82

EPNet [8] L+I 89.81 79.28 74.59 81.23 52.79 44.38 41.29 46.15 - - - - -

3D-CVF [28] L+I 89.20 80.05 73.11 80.79 - - - - - - - - -

SFD [22] L+I 91.73 84.76 77.92 84.80 - - - - - - - - -

Graph-VoI [25] L+I 91.89 83.27 77.78 84.31 - - - - - - - - -

VFF [12] L+I 89.50 82.09 79.29 83.62 - - - - - - - - -

FocalsConv [2] L+I 90.55 82.28 77.59 83.47 - - - - - - - - -

HMFI [11] L+I 88.90 81.93 77.30 82.71 50.88 42.65 39.78 44.44 84.02 70.37 62.57 72.32 66.49

CAT-Det [29] L+I 89.87 81.32 76.68 82.62 54.26 45.44 41.94 47.21 83.68 68.81 61.45 71.31 67.05

LoGoNet (Ours) L+I 91.80 85.06 80.74 85.87 53.07 47.43 45.22 48.57 84.47 71.70 64.67 73.61 69.35

all published methods by a large margin, surpasses the re-

cent multi-modal method CAT-Det [29] method by 2.30%

mAP and the LiDAR-only detector [6] by 4.05% mAP.

2.3. Evaluation Regarding Distance.

In Table C, we also report the comparison between our

LoGoNet and other state-of-the-art methods on the WOD

test leaderboard* based on performance regarding different

distances for the vehicle class. It is evident that our method

outperforms all previous methods by remarkable margins

on all distance ranges in both LEVEL 1 and LEVEL 2. In

particular, LoGoNet outperforms all previous methods at

detecting distant objects by a large margin and surpasses the

state-of-the-art method CenterFormer [32] by 2.53% APH

(L2). It strongly demonstrates the effectiveness of the pro-

posed local-to-global cross-modal fusion.

2.4. Inference Time Analysis

The inference time of multimodal 3D object detection

is a vital factor considering its practicality in autonomous

driving. We report the inference time of LoGoNet on both

WOD and KITTI benchmarks. LoGoNet is evaluated using

one NVIDIA A100 GPU and the batch size is set as 1. Ta-

ble D shows the comparison between LoGoNet and previ-

ous competitive methods. LoGoNet achieves the best trade-

off between the accuracy and efficiency among all methods.

2.5. Model Ensembling Settings.

We follow [4, 7, 13] to use different test time augmenta-

tions, including point cloud global rotation, global scaling

*https://waymo.com/open/challenges/ 020/3d-detection/

Table C. Performance comparisons with the state-of-the-art meth-

ods on the WOD test set for vehicle detection. † means multi-

modal methods.

Difficulty Method
Vehicle APH

Overall 0-30m 30-50m 50m-Inf

LEVEL 1

PV-RCNN [17] 80.57 92.98 79.57 60.47

CenterPoint++ [27] 82.33 92.42 81.61 64.13

AFDetV2 [7] 81.22 92.12 79.29 61.75

INT [23] 84.29 93.37 84.07 67.64

DeepFusion† [13] 82.82 93.23 81.38 63.79

MPPNet [1] 83.88 93.23 83.33 67.70

CenterFormer [32] 84.94 94.17 84.21 67.96

BEVFusion† [15] 84.55 94.04 83.67 67.25

LoGoNet† (Ours) 86.10 94.38 85.45 70.85

LEVEL 2

PV-RCNN [17] 73.23 92.03 73.52 48.62

CenterPoint++ [27] 75.05 91.17 75.89 52.02

AFDetV2 [7] 73.89 90.85 73.50 50.03

INT [23] 77.62 92.32 79.01 55.97

DeepFusion† [13] 75.69 92.01 75.90 52.07

MPPNet [1] 76.91 92.04 77.94 55.76

CenterFormer [32] 78.28 93.12 79.06 56.32

BEVFusion† [15] 77.48 92.89 78.14 55.08

LoGoNet† (Ours) 79.30 93.26 80.16 58.75

and translation along z-axis, which is similar to the data

augmentation in the training process. To be more specific,

we use [0◦,±22.5◦, ±45◦, ±135◦, ±157.5◦, 180◦] for yaw

rotation, [0.95, 1.05] for global scaling, and [-0.2m, 0m,

0.2m] for translation along the z-axis. For ensembling, we

adopt the model ensemble by the 3D version of weighted

box fusion (WBF) [18] to ensemble different models with

the above test time augmentations. We obtain different



Table D. Inference time and performance comparisons on the

WOD and KITTI val sets with competitive methods. We aver-

age the 3D mAPH (L2) on WOD val set. The mAP is averaged

over the APs of moderate level across three classes on the KITTI

val set. ‡ denotes the results are reported in [6].

Method Modality
Waymo KITTI

FPS mAPH (L2) FPS mAP

PV-RCNN [17] L 2.53 58.14 7.04 70.99

Voxel-RCNN‡ [3] L 10.98 57.47 13.51 72.97

PDV [6] L 2.94 60.56 7.41 73.44

EPNet [8] L+I - - 9.10 67.85

VFF [12] L+I - - 5.00 74.58

DeepFusion [13] L+I 3.13 67.00 - -

LoGoNet (Ours) L+I 3.88 71.38 10.69 74.70

Figure A. Screenshot of the Waymo 3D detection leaderboard on

the date of CVPR deadline, i.e., Nov 12, 2022.

types of models with 5-frames and 3-frames with different

gird sizes of [0.075m, 0.075m, 0.15m] and [0.1m, 0.1m,

0.15m]. The resulting model is named as LoGoNet Ens in

Table 1 of the main text.

2.6. Screenshot of Waymo 3D Detection Leader-
board

We submit detection results of LoGoNet to Waymo
3D detection leaderboard. As shown in Fig. A, our Lo-
GoNet ranks 1st on the detection leaderboard at the time
of submission.
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