Supplementary Material for MAGE: MAsked Generative Encoder
to Unify Representation Learning and Image Synthesis
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Figure 1. Examples of image inpainting (first row), outpainting (second row), and uncropping (outpainting on a large mask, third row)

using MAGE (ViT-L).
1. Additional Results

1.1. Qualitative Results

Image Inpainting and Outpainting. With the superior
class-unconditional reconstruction and generation power
shown in the main paper, MAGE naturally enables many
common image synthesis applications. As shown in
MAGE can reconstruct realistic and high-quality
images for different image editing tasks such as inpaint-
ing (first row), outpainting (second row), and uncropping
(outpainting on large masks, third row). We also include
more qualitative results in|Figure S} [Figure 6| and |[Figure 7|
demonstrating MAGE’s excellent ability in such image syn-
thesis tasks. All results are generated using MAGE based
on ViT-L trained with default augmentations, and the origi-
nal images are all from the ImageNet eval set.

Class Unconditional Generation. We include more
class unconditional generation results using default strong
augmentation (random crop and resize (0.2 to 1) and ran-
dom flipping) and weak augmentation (random crop and re-

size (0.8 to 1) and random flipping) in[Figure 3|and|[Figure 4

1.2. Quantitative Results

Class-Conditional Image Generation. Our model can
also be used for class-conditional image generation as
downstream task. To enable class-conditional generation,
we take the ViT encoder from pre-training, and replace the
original ViT decoder with a class-conditional decoder (12-
layer ViT with embedding dimension 768, 113M parame-
ters) which takes the class label as another input (concate-
nated to the padded features). During training, we freeze
the encoder parameters to better evaluate the quality of the



Table 1. Quantitative comparison with state-of-the-art generative
models on ImageNet 256x256 for class-conditional generation.
Our method uses a MAGE pre-trained ViT-B as encoder and only
trains a class-conditional decoder with 113M parameters.

Methods ‘ FID| IST #params
DCTransformer [|15]] 36.51 - 738M
VQVAE-2 [17] 31.11 ~45 13.5B
VQGAN [3] 18.65 80.4 227TM
VQGAN [9] 1578 78.3 1.4B
Improved DDPM [16] | 12.26 - 280M
ADM [6] 10.94 101.0 554M
LDM [19] 10.56 103.5 400M
BigGAN-deep [_2] 6.95 198.2 160M
MaskGIT (3] 6.18  182.1 227M
MAGE (ViT-B) 6.93 1958 [17M+113M

learned representations. Similar to pre-training, the model
will take masked tokenized images as input and try to re-
construct the masked tokens. The only difference is that the
decoder will not only see representations from the encoder,
but also know the class label of the input image. Then dur-
ing inference, the class label will be used to guide the model
to generate images of the same class.

As shown in MAGE achieves comparable per-
formance as SOTA image generation methods on the task of
class-conditional image generation on ImageNet-1K. Note
that our encoder is inherited from the pre-training and is not
fine-tuned during the downstream class-conditional train-
ing. Only the decoder is trained and has information about
the class label. This shows that MAGE’s encoder can learn
high-quality representations that can achieve similar gen-
erative performance as models trained end-to-end on class
conditional generative tasks.

Few-shot Transfer Learning. In the main paper, we
provide transfer learning results of MAGE on 8 different
datasets with 25 samples per class. Here we further show
our method’s performance with 1, 5, and 10 samples per
class. As shown in[Figure 2] our method is consistently bet-
ter than MAE and SimCLR on most datasets with different
numbers of samples per class, demonstrating the effective-
ness of our method on few-shot transfer learning.

2. Ablation Studies

In this section, we conduct extensive ablation studies on
our method. Without further notice, we use ViT-B trained
with 800 epochs for all ablation studies.

MAE with GAN loss. One trivial solution to force the
previous MIM method to generate realistic images is to add
a GAN loss on top of the reconstructed image. However,
we show that introducing GAN loss during previous MIM
pre-training could largely decrease the performance of lin-

Table 2. Top-1 accuracy of linear probing on ImageNet-1k with
different method. MAE with GAN loss significantly reduces its
performance on linear probing.

Methods | Linear Probing (%)
MAE (ViT-L) [11] 75.1
MAE (ViT-L) + norm pixel loss [|11] 75.8
MAE + GAN loss (ViT-L) [[10] 64.1
MAGE 78.9

ear probing. As shown in we evaluate the linear
probing performance of a ViT-L MAE model pre-trained
with an extra GAN loss released in MAE’s official GitHub
repo [[10]. Although this model can reconstruct much more
realistic images than the original MAE, the linear probing
performance decreases by 11% compared with the ViT-L
MAE model pre-trained without the GAN loss. On the other
hand, our MAGE framework enables generative modeling
and representation learning to help each other, achieving
SOTA performances on both tasks using one single model.

Table 3. FID and top-1 accuracy of linear probing on ImageNet-1k
by padding with [C] or a universal [MASK] token.

Padding Token ‘ FID Linear Probing (%)
[MASK] 12.4 72.5
[C] 11.6 73.3

Pad with [CLS] token. To pad the output of the en-
coder, unlike MAE which uses a learnable mask token that
is shared for different inputs, we use the class token fea-
ture which is specific to each image. This design allows
the decoder to take the global features extracted by the en-
coder as input. As shown in this design can im-
prove both class-unconditional generation performance and
linear-probing results.

Table 4. FID and top-1 accuracy of linear probing of ViT-B trained
1600 epochs on ImageNet-1k using strong augmentations (s.a.)
and weak augmentations (w.a.).

Augmentations ‘ FID Linear Probing (%)
MAGE + w.a. 8.67 70.5
MAGE + s.a. 11.1 74.7

Augmentations. As shown in many previous works on
generative modeling and representation learning [4, 7|11}
18], the augmentation used to train the model is impor-
tant for both generation and representation learning per-
formance. In our paper, we use two different sets of aug-
mentations: default augmentations, or strong augmenta-
tions (s.a.), which consist of random crop and resize (0.2 to



1) and random flipping; weak augmentations (w.a.), which
consist of random crop and resize (0.8 to 1) and random
flipping. The only difference between s.a. and w.a. is the
zoom-in scale of random crop and resize. As shown in[Ta-]
ble 4] strong augmentations favor representation learning
and weak augmentation favor generation quality, which is
consistent with findings in prior works [[7,/11].

Table 5. FID and top-1 accuracy of linear probing of ViT-B trained
400, 800, and 1600 epochs on ImageNet-1k.

#Pre-training Epochs | FID  Linear Probing (%)

400 12.2 72.2
800 11.6 73.3
1600 11.1 74.7

Pre-training Epochs. One important factor in self-
supervised learning methods is the number of pre-training
epochs. Prior works have shown that longer pre-training
epochs can largely improve the performance of self-
supervised methods [4,[11]. We compare MAGE’s perfor-
mance on ViT-B using 400, 800 and 1600 epochs of pre-
training in We observe that MAGE achieves good
performances in both generation and representation learn-
ing with 400 epochs of pre-training, and can consistently
benefit from longer training epochs.

Table 6. FID and top-1 accuracy of linear probing on ImageNet-
1k using different decoder architecture. d denotes decoder depth
(number of transformer blocs in the decoder), and w denotes de-
coder width (feature dimension in the decoder).

Decoder Arch. ‘ FID Linear Probing (%)
d=8,w=>512 12.4 72.1
d=8,w="T68 11.6 73.3
d=8,w=1024 | 114 73.5
d=6,w="T68 12.4 71.8
d=8,w="768 11.6 73.3
d=10,w =768 | 11.4 73.2
d=12,w =768 | 11.3 73.4

Decoder Design. MAE |[]11] shows that a small ViT de-
coder is enough to achieve good performance. We also try
different decoder architectures and summarize the results in
As shown in the table, the decoder with 8 blocks
and 768 feature dimension reaches the best balance between
computation cost and performance for ViT-B. Therefore, we
choose the decoder architecture to be 8 blocks with 768 fea-
ture dimensions for ViT-B and 1024 feature dimension for
ViT-L in the paper.

Complement MIM with Contrastive Loss. We show
in the main paper that MAGE can be further combined with

Table 7. Top-1 accuracy of linear probing on ImageNet-1k using
different methods. C denotes our contrastive loss, R denotes our
reconstructive loss, T denotes our re-implementation.

Methods ‘ Linear Probing (%)
MAE [11]] 68.0
R only 73.3
SimCLR T [4] 74.2
C only 72.9
C+R (MAGE-C) 77.1

Table 8. Top-1 accuracy of linear probing with different .

A ‘ 0 001 005 01 02 05

Linear Probing ‘ 733 755 767 711 769 76.6

a simple contrastive loss (MAGE-C) to achieve better rep-
resentation learning performance. In[Table 7|we show more
ablations regarding this contrastive loss. The performance
of simply applying the contrastive loss without the recon-
structive loss is worse than the SimCLR baseline. This is
likely because we do not use augmentations such as color
jittering and random grey scale, so applying only the con-
trastive loss could result in learning shortcut semantics such
as color distribution [4,|18]]. However, the reconstructive
loss can prevent the network from falling into such short-
cut solutions and help the network learn richer semantics.
To choose A which balances contrastive and reconstructive
loss, we ablate different values of A\ as shown

Table 9. FID and top-1 accuracy of linear probing of MAGE-C on
ImageNet-1k using different maximum masking ratio max(m..).

| FID  Linear Probing (%)

max(m,)=1.0 | 14.1 75.0
max(m,)=0.7 | 23.5 76.3
max(m,)=0.6 | 27.0 77.1

We also notice one problem of applying contrastive train-
ing to MAGE: MAGE can see very high masking ratios dur-
ing training, but applying positive loss to two augmented
views of the same image both with a very high masking ra-
tio is problematic. This is because such two views can share
very little common information, leading to a performance
drop as shown in [21]]. Therefore, we only apply contrastive
loss when the masking ratio is relatively low (m, < 0.6).
In[Table 9] we show the performance of generation and rep-
resentation learning w.r.t. the maximum masking ratio of
our variable masking ratio distribution. Smaller max(m,.)
leads to better linear probing but worse FID. We believe it
is because, with smaller max(m,.), the contrastive loss can
operate on more samples in the batch whose masking ratio



m, < 0.6, which is important for contrastive learning as
shown in [4]. On the other hand, small max(m,.) harms
the generation performance because the network should see
a relatively high masking ratio to enable generation from
blank image (100% masking ratio). We leave a further in-
vestigation of this phenomenon and a better combination
strategy for future work.

3. Implementation Details

Tokenizer and Detokenizer. We use a CNN-based VQ-
GAN encoder and quantizer to tokenize the 256x256 input
images to 16x16 discrete tokens. The detokenizer operates
on the 16x16 discrete tokens and reconstructs the 256x256
image. The encoder consists of 5 blocks and each block
consists of 2 residual blocks. After each block in the en-
coder, the feature is down-sampled by 2 using average pool-
ing. The quantizer then quantizes each pixel of the en-
coder’s output feature map using a codebook with 1024
entries, each entry with dimension 256. The detokenizer
consists of another 5 blocks where each block consists of 2
residual blocks. After each block in the decoder, the feature
map is up-sampled by 2. The tokenizer consists of 23.8M
parameters and the detokenizer consists of 30.5M parame-
ters. Our VQGAN tokenizer and detokenizer are trained on
ImageNet-1K with 256 batch size. Please refer to our code
and the original VQGAN paper for more details [9].

ViT architecture. After the tokenizer, the latent se-
quence length becomes 256 (plus one ’fake’ class token).
We then follow a similar encoder-decoder Transformer ar-
chitecture similar to MAE [11]. More specifically, we use
standard ViT architecture [8|], which consists of a stack of
Transformer blocks [22], where each block consists of a
multi-head self-attention block and an MLP block. We use
two learnable positional embeddings, one added to the input
of the encoder and another added to the input of the decoder.

We use features from the encoder output for classifica-
tion tasks, such as linear probing, few-shot transfer learn-
ing, and fine-tuning. We average pool the encoder output
without the class token to get the input of the linear classi-
fier.

Pre-training. Please refer to for our default
pre-training setting. We use only random crop and resize
(0.2 to 1) and random horizontal flip as our default augmen-
tations.

Generation. We use iterative decoding as in MaskGIT
[3] to iteratively fill in masked tokens and generate images.

To generate an image at inference time, we start from a

)

blank canvas with all the tokens masked out, i.e., YJS) . For

iterationt = 1,--- , T, the algorithm runs as follows:

1. Predict. Given Yj\(j) which is the unmasked tokens at
the beginning of iteration ¢, we first predict the probability
of the remaining masked tokens using our model, denoted

Table 10. Pre-training Setting.

config value

optimizer AdamW [14]

base learning rate 1.5e-4

weight decay 0.05

optimizer momentum 51,82 =0.9,0.95
batch size 4096 (B), 2048 (L)
learning rate schedule | cosine decay [|13|]
warmup epochs 40

training epochs 1600

gradient clip 3.0

label smoothing [20] 0.1

dropout 0.1

masking ratio min 0.5

masking ratio max 1.0 MAGE) 0.6 (MAGE-C)
masking ratio mode 0.55

masking ratio std 0.25

MAGE-C only

contrastive loss weight | 0.1

temperature 0.2

Table 11. Linear Probing Setting.

config ‘ value

optimizer LARS [23]

base learning rate 0.1 (B)0.05 (L)
weight decay 0

optimizer momentum | 0.9

batch size 4096

learning rate schedule | cosine decay [|13|
warmup epochs 10

training epochs 90

augmentation RandomResizedCrop

Table 12. End-to-end fine-tuning Setting.

config value
optimizer AdamW [|14]|
base learning rate 2.5e-4
weight decay 0.05

optimizer momentum B1, B2 = 0.9,0.999
layer-wise Ir decay [[1] | 0.65 (B) 0.75 (L)
batch size 1024

learning rate schedule | cosine decay [13]]
warmup epochs 5

training epochs 100 (B) 50 (L)
label smoothing [20] 0.1

augmentation RandAug (9, 0.5) [5]]
mixup [25] 0.8

cutmix [24]] 1.0

random erase 0

drop path [[12]] 0.1 (B)0.2 (L)

as p(t) € RN+xK where N, is the number of remaining
masked tokens and K is the number of entries in the code-



Table 13. Supervised training from scratch setting with ViT on
semantic tokens.

config value

optimizer AdamW [14]

base learning rate le-4

weight decay 0.3

optimizer momentum B1, B2 =0.9,0.95
batch size 4096

learning rate schedule cosine decay [[13]
warmup epochs 20

training epochs 300 (B) 200 (L)
label smoothing [20] 0.1

augmentation RandAug (9, 0.5) [5]
mixup [25] 0.8

cutmix [24] 1.0

drop path [[12] 0.1 (B)0.2 (L)
exp. moving average (EMA) | 0.9999

book.

2. Sample. At each masked location ¢, we sample a to-
ken y,gt) based on the prediction probability pgt) € RE over
all possible tokens in the codebook, and form the unmasked
prediction Y (). After yz@ is sampled, its corresponding
prediction score plus a noise sampled from a random Gum-
bel distribution multiplied by temperature 7 is used as the
“confidence” score indicating the model’s belief of the pre-
diction at location ¢. The confidence scores at the unmasked
locations are set to +o0.

3. Mask. We then determine the number of tokens N,
for the next iteration ¢ 4 1 based on a cosine masking sched-
ule N1 = Ny - cos(2%). We then sample N, locations
with the lowest confidence scores and mask those locations
from Y*) to generate Y\ .

For class unconditional generation, we choose 7 = 6.0
and T = 20 to generate images in our experiment.

Linear Probing & Fine-tuning. Our linear probing and
fine-tuning setup follow MAE [11]|. Please see[Table TT]and
for detailed configurations.

Training from scratch. We also follows MAE [11] for
our training-from-scratch baseline. [lable 13| summarizes
our configurations.

Code. For more implementation details, please refer to
our code included in the supplementary material. We will
also release our code and pre-trained model to the public.
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Figure 2. Transfer learning performance of ViT-B and ViT-L pre-trained on ImageNet-1K using different methods. Our methods outperform
SimCLR [4] and MAE [IT] on most datasets under different few-shot settings.



Figure 3. More uncurated examples of Class-unconditional image generation on ImageNet using MAGE trained with default strong
augmentation.



Figure 4. More uncurated examples of Class-unconditional image generation on ImageNet using MAGE trained with weak augmentation.
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Figure 5. More examples of image inpainting using MAGE (ViT-L).
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Figure 6. More examples of image outpainting using MAGE (ViT-L).
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Figure 7. More examples of image outpainting on large outpainting mask (uncropping) using MAGE (ViT-L).
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