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1. Implementation Details
This section introduces our implementation details on

input data processing and network. The complete imple-
mentation can be found in our code.

1.1. Input Data Processing

The processing details of the input point clouds and
images for nuScenes [2], Waymo [13], and SemanticKITTI
[1] datasets are summarized in Tab. S1. For nuScenes
and Waymo datasets, the input size (Hin,Win) of multi-
camera images are aligned as (640, 960) by resizing for
convenience of batch construction.

Table S1. Details on input data processing.

Dataset nuScenes [2] Waymo [13] SemanticKITTI [1]

Ponit Cloud Range: X-axis [−51.2m,+51.2m] [−75.2m,+75.2m] [−75.2m,+75.2m]
Ponit Cloud Range: Y -axis [−51.2m,+51.2m] [−75.2m,+75.2m] [−75.2m,+75.2m]
Ponit Cloud Range: Z-axis [−5.0m,+3.0m] [−2.0m,+4.0m] [−4.0m,+2.0m]

Voxelization Step d (0.1m, 0.1m, 0.2m) (0.1m, 0.1m, 0.15m) (0.1m, 0.1m, 0.15m)
Image Input Size (Hin,Win) (640, 960) (640, 960) (360, 1280)

1.2. Network

We implement all the neural network models in our paper
based on the popular deep learning framework Pytorch 1.7.1
and the GPU-cluster server with Tesla-V100 devices and
CUDA 11.0 platform.

LiDAR Point Cloud Backbone. To be general enough,
we adopt LiDAR point cloud backbone as the sparse 3D U-
Net [11] from OpenPCDet toolbox [3], which is a widely-
used point cloud backbone in 3D object detection and
segmentation. As shown in Fig. S1, the sparse 3D U-
Net stacks four down-sampling blocks to make the voxel-
wise features more informative with increasing receptive
fields, four up-sampling blocks for resolution restoration
and feature refinement, and skip-connections between the
down-sampling and up-sampling blocks. For the eight
convolutional blocks, we configure the output feature
dimensions [C1 - C8] as [32, 64, 128, 256, 128, 64, 32,

32], respectively. We use the same point cloud backbone
configuration for all the experiments.

The 3D convolution operations include the sparse 3D
convolution (SparseConv3D), inverse sparse 3D convo-
lution (InverseSparseConv3D) [15], and submanifold 3D
convolution (SubMConv3D) [5], implemented by Spconv
1.2 [4].

Camera Image Backbone. In our paper, we employ
HRNet-w48 [14] as our default image backbone in all the
experiments, which is further validated in the scalability
analysis from Tab. 9 in our paper.

SF-Phase. Both the Multi-Head Self-Attention
(MHSA) and Multi-Head Cross-Attention (MHCA) are
configured with NH as 4, Cgfused as 64, and Csfused as 96.

Training. All our models are trained under the same
training schedule: AdamW [9] optimizer and one-cycle
learning rate policy [12] with division factor 10, momentum
ranges from 0.95 to 0.85, weight decay 0.01, maximum
learning rate 0.01, and a batch of 32 random samples are
distributed on 16 Tesla V100 GPUs with 24 epochs. During
the training process, the data augmentation transformations
in Tab. 1 of our paper are used to avoid overfitting.

Inference. During the inference stage, the argmax
function is applied on the point-wise output Ŷ to obtain
the category index with the highest probability value as the
segmentation result for each point. Note that the voxel-wise
segmentation Dlidar and pixel-wise segmentation D′

img are
not used for the final result. For preparing the submission
results in Tab. 2 and Tab. 3 to online leaderboards, we
employ the Test-Time Augmentation (TTA) proposed in
SDSeg3D [8] and model ensemble as the common practices
as other submissions. We train 4 MSeg3D variants
configured with 1/10/20/25 point cloud frames for nuScenes
and 3 MSeg3D variants configured with 1/5/10 point cloud
frames for Waymo, where each model is applied with TTA.
Notably, the rest of the results in our paper except Tab. 2 and
Tab. 3 are all evaluated without TTA or model ensemble.
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Figure S1. Point cloud backbone: sparse 3D U-Net.

2. Experimental Results

This section includes more qualitative and quantitative
experimental results in addition to our paper.

2.1. Qualitative Results

Fig. S2 and Fig. S3 show that both the 3D and 2D
semantic segmentation can be jointly achieved in our
unified multi-modal MSeg3D. The LiDAR-side segmen-
tation denotes the final output while the camera-side
segmentation denotes the D′

img in Eq. 5 in our paper.
Notably, although both the datasets do not provide image
segmentation annotations, the camera-side segmentation
results are reliable enough, which validates that the sparse
point-to-pixel label Ypoint2pixel generated in Eq. 16 provides
sufficient supervision to correctly guide the D′

img. Thus,
the additional and expensive manual annotations on images

are not necessary for training our multi-modal 3D semantic
segmentation model.

For both datasets, we provide visualizations on a day
sample and a night sample at the top and bottom, re-
spectively. Especially for challenging night samples with
insufficient illumination, our segmentation predictions are
still reliable and robust due to the active laser-measurement
of LiDAR. The Waymo results in Fig. S3 show better
segmentation than the nuScenes results in Fig. S2, where
the likely reason is that Waymo can provide relatively
fine-grained image supervision in the point-to-pixel label
Ypoint2pixel from the denser laser points (i.e., 64 beams on
Waymo and 32 beams on nuScenes).

2.2. Quantitative Results

Further Analysis on Performance Gap on All Points
and Points Inside. The detailed results of Tab. 5 in our



paper are included in Tab. S2 and Tab. S3 for nuScenes
and Waymo, respectively, which are also evaluated by the
mIoU on all points and mIoU1 on points inside. Despite
the inapparent mIoU improvements, the improvements of
mIoU1 are much more obvious, especially on nuScenes. In
Tab. S2, the multi-camera modality shows strong potential
to improve the LiDAR-only model across all the categories
inside the sensor FOV intersection, which motivates us to
dive deeper into the multi-modal segmentation. Without
loss of generality, we further conduct similar experiments
on Waymo. From Tab. S3, the performance improvements
of multi-modal models are relatively weaker but show
a consistent trend. On Waymo, the improvements are
weakened by the denser leaser points and the missing rear
camera, which is also analyzed in Fig. 3 of our paper. Under
such an implicit condition, we effectively make efforts to
further investigate the inherent difficulties for achieving
top-performing multi-modal 3D semantic segmentation by
our complete MSeg3D framework.

Further Analysis on Camera Malfunction. From
Tab. 7 in our paper, our MSeg3D with no working cameras
(denoted as #Camera = 0) still outperforms the LiDAR-
only baseline (denoted as #Camera = ×), which is benefited
from the loss term Lpixel2point (Eq. 13) in training stage. As
we have analyzed in our paper, applying such a loss term
effectively transfers the useful image appearance priors to
facilitate LiDAR feature learning. From the perspective
of knowledge distillation [6], optimizing the Lpixel2point can
also be treated as a feature-level distillation. Such experi-
mental results also hint at an attractive and potential trend
that can be deeply investigated: performing cross-modal
knowledge distillation can improve point cloud feature
learning as well as maintain computational efficiency if the
image branch is designed to be detached during inference.

Further Analysis on Multi-frame Point Clouds Input.
The category-wise results in Tab. 8 in our paper are
detailed in Tab. S4 and Tab. S5 for nuScenes and Waymo,
respectively. As can be observed in Tab. S4 and Tab. S5, the
optional multi-frame point clouds benefit the segmentation,
especially on some static objects (such as pole, cone,
sign, sidewalk, road and so on) or slow-moving objects
(like pedestrian). Motion blur is more likely to occur on
high-speed moving objects, because the relative motion
between the object and the ego-vehicle cannot be accurately
estimated by the ego-vehicle information alone. The
improvements are gradually saturated with the point clouds
of more than 10 frames on Waymo and 25 frames on
nuScenes, since the motion blur effect also becomes more
severe. More neighbor frames of nuScenes point cloud can
be used due to the higher sampling frequency of LiDAR

1In the following text, mIoU1 denotes the segmentation performance
evaluated on only the points inside the FOV intersection by excluding the
points outside like PMF [16] and other methods [7, 10].

sensors (i.e., 20 Hz on nuScenes vs 10 Hz on Waymo).
As shown in the last rows, our multi-modal MSeg3D
framework is also capable of improving the best-performing
multi-frame LiDAR-only model, which is also analyzed in
Tab. 8 of our paper.
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Figure S2. Qualitative visualization on nuScenes validation set, exported from the complete MSeg3D model in the last row of Tab. 6. Best
viewed with zoom and color. The dense prediction of the RGB image is D′

img, supervised by the sparse point-to-pixel label Ypoint2pixel in
Eq. 16. Note that the points outside are projected below the image bottom boundary. The top half of the image has no labels since no points
are projected into this area.

Table S2. Experiments on the performance gap between the mIoU on all points and mIoU1 on points inside, and the effects of data
augmentation (DA), which are the details of Tab. 5 on nuScenes validation set. For simplicity, only the GF-Phase is used for multi-modal
fusion (M-Fusion) in this table. Data augmentation (DA) includes the LiDAR DA (L-DA) and Multi-modal DA (M-DA).
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Figure S3. Qualitative visualization on Waymo validation set, exported from the complete MSeg3D model in the last row of Tab. 6. Note
that the points within the rearview have no corresponding image, while our model reasonably segments all points in the point cloud with a
few errors. The dense prediction of the RGB image is D′

img, supervised by the sparse point-to-pixel label Ypoint2pixel in Eq. 16. The top half
of the image has no labels since no points are projected into this area.

Table S3. Experiments on the performance gap between the mIoU on all points and mIoU1 on points inside, and the effects of data
augmentation (DA), which are the details of Tab. 5 on Waymo validation set. Similar experimental setup to Tab. S2.
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Table S4. Category-wise results of multi-frame point clouds input on nuScenes validation set, which are the details of Tab. 8 in our paper.
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Table S5. Category-wise results of multi-frame point clouds input on Waymo validation set, which are the details of Tab. 8 in our paper.
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