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A. Motivation and Visualization analysis
There has been a trend to unify detection and segmen-

tation tasks using convolution-based models, which not
only simplifies model design but also promotes mutual co-
operation between detection and segmentation. However,
in Transformer-based models, specialized models perform
much better than unified models. Though detection is a twin
task of segmentation, our experiments in Sec. 3 of the paper
indicate that trivially extending Transformer-based detec-
tion and segmentation models to other tasks achieve inferior
performance compared to the original tasks. Therefore, in-
stead of achieving unification by sacrificing performance on
each task, Mask DINO aims to develop a unified framework
that promotes mutual cooperation between detection and
segmentation tasks.

There are mainly three motivations for us to propose Mask
DINO. First, DINO [21] has achieved remarkable results in
object detection. Previous works such as Mask RCNN [8],
HTC [2], and DETR [1] have shown that a detection model
can be extended to do segmentation and help design better
segmentation models.

Second, detection is a relatively easier task than instance
segmentation. As shown in Table 3 in the paper (and other
previous studies), Box AP is usually 4+ AP higher than
mask AP. Therefore, box prediction can guide attention to
focus on more meaningful regions and extract better features
for mask prediction.

Third, the new improvements in DINO and other DETR-
like models [12, 23] such as query selection and deformable
attention, can also help segmentation tasks. For example,
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Mask2Former adopts learnable decoder queries, which can-
not take advantage of the position information in the selected
top K features from the encoder to guide mask predictions.
Fig. 1(a)(b)(c) show that the output of Mask2Former in
the 0-th decoder layer is far away from the GT mask while
Mask DINO outputs much better masks as region proposals.
Mask2Former also adopts specialized masked attention to
guide the model to attend to regions of interest. However,
masked attention is a hard constraint that ignores features
outside a provided mask and may overlook important infor-
mation for following decoder layers. In addition, deformable
attention is also a better substitute for its high efficiency al-
lowing attention to be applied to multi-scale features without
too much computational overhead. Fig. 1(d)(e) shows a
predicted mask of Mask2Former in its 1-st decoder layer and
the corresponding output of Mask DINO. The prediction of
Mask2Former only covers less than half of the GT mask,
which means that the attention can not see the whole instance
in the next decoder layer. Moreover, a box can also guide
deformable attention to a proper region for background stuff,
as shown in Fig. 1(f)(g).

B. Implementation details
The code is available in the supplementary materials.

We also provide some detailed descriptions of our implemen-
tation here.

B.1. General settings

Dataset and metrics: We evaluate Mask DINO on two
challenging datasets: COCO 2017 [15] for object detec-
tion, instance segmentation, and panoptic segmentation;
ADE20K [22] for semantic segmentation. They both have
"thing" and "stuff" categories, therefore, we follow the com-
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Figure 1. (a) The green transparent region is the ground truth mask for the girl. (b)(c) The predicted masks of the 0-th decoder layer in
Mask2Former and Mask DINO, respectively. Note that we attain the predicted masks by first choosing the query which is finally assigned to
the ground truth mask in the last decoder layer. Then we visualize the predicted mask of this query by performing dot production with
the pixel embedding map. (d)(e) The outputs of the 1-st layer in Mask2Former and Mask DINO. The red masks are predicted masks and
the green box is the predicted box by Mask DINO. The blue points are sampled points by deformable attention. Since the 0-th layer of
Mask2Former usually outputs unfavorable masks, we avoid using its 0-th layer here. (f)(g) show that Mask DINO can predict correct
sampled points, boxes, and masks for background stuffs.

mon practice of evaluating object detection and instance
segmentation on the "thing" categories and evaluate panop-
tic and semantic segmentation on the union of the "thing"
and "stuff" categories. Unless otherwise stated, all re-
sults are trained on the train split and evaluated on the
validation split. For object detection and instance seg-
mentation, the results are evaluated with the standard average
precision (AP) and mask AP [15] result. For panoptic seg-
mentation, we evaluate the results with the panoptic quality
(PQ) metric [10]. We also report APTh

pan (AP on the "thing"
categories) and APSt

pan (AP on the "stuff" categories). For
semantic segmentation, the results are evaluated with the
mean Intersection-over-Union (mIoU) metric [6].
Backbone: We report results with two public backbones:
ResNet-50 [9] and SwinL [17]. To achieve SOTA perfor-
mance using a large model with the SwinL backbone, we
use Objects365 [19] to pre-train an object detection model
and then fine-tune the model on the corresponding datasets
for all tasks. Though we only pre-train for object detection,
our model generalizes well to improve the performance of
all segmentation tasks.
Loss function: As we train detection and segmentation
tasks jointly, there are totally three kinds of losses, includ-
ing classification loss Lcls, box loss Lbox, and mask loss
Lmask. Among them, box loss (L1 loss LL1 and GIOU
loss [18] Lgiou) and classification loss (focal loss [14]) are
the same as DINO [21]. For mask loss, we adopt cross-
entropy Lce and dice loss Ldice. We also follow [3, 4, 11]
to use point loss in mask loss for efficiency. Therefore, the
total loss is a linear combination of three kinds of losses:
λclsLcls + λL1LL1 + λgiouLgiou + λceLce + λdiceLdice,
where we set λcls = 4, λL1 = 5, λgiou = 2, λce = 5, and
λdice = 5.
Basic hyper-parameters: Mask DINO has the same archi-
tecture as DINO [21], which is composed of a backbone, a
Transformer encoder, and a Transformer decoder. Compared
to DINO, we increase the number of decoder layers from six

to nine and use 300 queries. We follow Mask-RCNN [8] and
Mask2Former [3] to setup the training and inference settings
for segmentation tasks. We use batch size 16 and train 50
epoch for COCO segmentation tasks (instance and panop-
tic), 160K iteration for ADE20K semantic segmentation,
and 90K iterations for Cityscapes semantic segmentation.
We set the initial learning rate (lr) as 1× 10−4 and adopt a
simple lr scheduler, which drops lr by multiplying 0.1 at the
11-th epoch for the 12-epoch setting and the 20-th epoch for
the 24-epoch setting. For the other segmentation settings,
we drop the lr at 0.9 and 0.95 fractions of the total number
of training steps by multiplying 0.1. Under the ResNet-50
backbone, we use 4 A100 GPUs, each with 40GB memory
for all tasks. We report the frames-per-second (fps) tested on
the same A100 NVIDIA GPU for Mask2Former and Mask
DINO by taking the average computing time with batch size
1 on the entire validation set.
Augmentations and Multi-scale setting: We use the same
training augmentations as in Mask2Former [3], where the
major difference from DINO [21] on COCO is that we use
large-scale jittering (LSJ) augmentation [5,7] and a fixed size
crop to 1024 × 1024, which also works well for detection
tasks. We use the same multi-scale setting as in DINO [21]
to use 4 scales in ResNet-50-based models and 5 scales in
SwinL-based models.

B.2. Denoising training

Following DN-DETR [12], we train the model to recon-
struct the ground-truth objects given the noised ones. These
noised objects will be concatenated with the original decoder
queries during training, but will be removed during inference.
We add noise to both the bounding box and labels, which
will serve as positional embedding and content embedding
input to decoder queries. As a box can be viewed as a noised
version of a segmentation mask, our unified denoising train-
ing will reconstruct the masks given the noised boxes, which
improves segmentation training.
Label noise: For label noise, we use label flip, which ran-



Method Params Backbone Backbone Pre-training
Dataset

Detection Pre-training
Dataset

test

w/o TTA w/ TTA

Instance segmentation on COCO AP

Mask2Former [3] 216M SwinL IN-22K-14M − 50.5 −
Soft Teacher [20] 284M SwinL IN-22K-14M O365 - 53.0

SwinV2-G-HTC++ [16] 3.0B SwinV2-G IN-22K-ext-70M [16] O365 - 54.4

MasK DINO(Ours) 223M SwinL IN-22K-14M O365 54.7 −

Panoptic segmentation on COCO PQ

Panoptic SegFormer [13] −M SwinL IN-22K-14M − 56.2 −
Mask2Former [3] 216M SwinL IN-22K-14M − 58.3 −

MasK DINO (ours) 223M SwinL IN-22K-14M O365 59.5 −

Table 1. Comparison of SOTA models on COCO test-dev. Mask DINO outperforms all existing models. "TTA" means test time
augmentation. “O365” denotes the Objects365 [19] dataset.

domly flips a ground-truth label into another possible label
in the dataset with probability p. After adding noise, all
the labels will go through a label embedding to construct
high-dimensional vectors, which will be the content queries
of the decoder. p is set to 0.2 in our model.
Box noise: A box can be formulated as (x, y, w, h), which
is also the positional query of DINO [21]. We add two
kinds of noise to the box, including center shifting and box
scaling. For center shifting, we sample a random perturba-
tion (∆x,∆y) to the box center. The sampled noise is con-
strained to |∆x| < λ1w

2 and |∆y| < λ1h
2 , where λ1 ∈ (0, 1)

is a hyperparameter to control the maximum shifting. For
box scaling, the width and height of the box are randomly
scaled to [(1− λ2), (1 + λ2)] of the original ones, where λ2

is also a hyperparameter to control the scaling. In our model,
we set λ1 = λ2 = 0.4.

C. Large models setting

For large models with the SwinL backbone, we follow
the same setting of DINO [21] to pre-train a model on the
Objects365 [19] dataset for object detection. Then we fine-
tune the pre-trained model on COCO instance and panoptic
segmentation for 24 epochs and on ADE20K semantic seg-
mentation for 160k iterations. For training settings on the
instance and panoptic segmentation on COCO, we use 1.2×
larger scale (1280 × 1280) and 16 A100 GPUs. For train-
ing settings on ADE20K semantic, we use 3× more queries
(900) and 8 A100 GPUs. We also use Exponential Moving
Average (EMA) in this setting, which helps in ADE20K
semantic segmentation.

D. SOTA Results on COCO test-dev
We show the COCO test-dev results in Table 1.

We achieve 54.7 AP on COCO instance segmen-
tation and 59.5 PQ on COCO panoptic segmenta-
tion.
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