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S1. Quantitative Results on Real Camera ISPs

Method Samsung NX2000 Olympus E-PL6 Sony SLT-A57
PSNR SSIM PSNR SSIM PSNR SSIM

RIR [5] 37.62 0.9696 42.19 0.9865 45.22 0.9916
SAM [8] 38.80 0.9725 43.15 0.9881 46.02 0.9921
CAM [4] 41.59 0.9818 47.76 0.9944 49.58 0.9954

Ours 43.05 0.9880 49.35 0.9949 51.36 0.9964

Table S1. Quantitative results on real camera ISPs. The best score for each column is in bold.

We report the quantitative results on the real RAW-JPEG image pairs in the NUS dataset [1]. Since the real ISPs are more
complicated, we set the regularisation parameters to λs = λp = λr = 0 to ensure the complexity of INF, and use the same
patch size as our main experiments. As is shown in Table S1, there is an obvious improvement drop compared with results
of our main experiments, due to the complex structure of the real ISPs. However, our method still outperforms the closest
competitor CAM [4] about 1.5dB in average PSNR, which indicates that our method generalizes well to the real ISPs. Note
that for Samsung NX2000, we only take the coordinates as input, as we find taking the pixel values as input would inevitably
lead to a drop in performance. We speculate that the camera ISP of Samsung NX2000 involves operations like resizing and
cropping, hence considering the mapping between the pixel values of RAW images and JPEG images would lead to a more
inaccurate reconstruction.

S2. Quantitative Results of Low-light Image Enhancement
We report the results on low-light image enhancement (LLIE) task in Figure S1. We first reconstruct the RAW image

using our proposed method, and then correct the exposure by enlarging all pixel values 10 times, which is also implemented
on the original JPEG image for comparison. After that, a simple camera ISP pipeline is adopted to re-render the RAW image
back to sRGB color space. We also provide one classical method [6] and five deep learning based approaches [10, 2, 11, 9, 3]
as references. It is obviously that the result of our method achieves equal or even better visual quality compared with other
methods, which indicates the the effectiveness of executing low-light enhancement on reconstructed RAW images. This has
the advantage of simplifying the enhancement operation, as our method only requires a linear conversion. Note that we do
not aim to illustrate that our method is better than others, as most LLIE methods are designed not only for enhancement but
also for denoising.

S3. Instability from Random Initialization
We point out that if we reconstruct a specific image multiple times, the accuracy values would differ to each other due

to the random initialization of INF. Though the random seed can be fixed for reproducibility, this would sometimes mislead
the definition of improvement. We conduct an experiment that reconstructing an image 300 times, and the result is shown in
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Input Directly Recovering AMSRCR [6] RetinexNet [10] Zero-DCE [2]
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Figure S1. Qualitative comparison on low-light image enhancement task. Directly Recovering represents directly processing the original
image with the same operation on reconstructed RAW image. For [6], we re-implement their method to produce the result. All deep
learning based methods are applied with the pre-trained models. This figure is best viewed in the electronic version.
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Figure S2. Reconstruction accuracy distribution due to random initialization. We use kernel density estimation (KDE) [7] to measure the
error distribution. The abscissa value represents the difference of reconstruction accuracy values to their mean value, and the ordinate value
refers to the kernel density of KDE.

Figure S2. As can be seen, the random initialization can lead to a difference about 0.25 dB in the final accuracy, which means
an accuracy gap less than 0.25 dB is not properly regarded as an improvement.

S4. Different Calculations of Total PSNR

We note that there are two different ways to calculate the total PSNR, which could bring an error about 0.2–0.34 dB.
Specifically, since PSNR could be defined as

PSNR = 10 log

(
MAX2

I

MSE

)
= −10 log (MSEnorm) , (1)
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Figure S3. Error distribution for different calculation of total PSNR. We use kernel density estimation (KDE) [7] to measure the error
distribution. The abscissa value represents the error of different calculation, and the ordinate value refers to the kernel density of KDE.

where MAXI denotes the maximum possible pixel value of the image (i.e., 2B − 1 if the image is B bit per pixel) and
MSEnorm represents the MSE after nomalization, we could calculate the total PSNR by either

(a) Calculating the PSNR of each image and then averaging them, i.e., PSNRtotal =
−10

∑n
i=1 log(msei)

n .

(b) Calculating the average MSE of images and then producing PSNR, i.e., PSNRtotal = −10 log
(∑n

i=1 msei
n

)
.

We discuss the difference between these two methods by the subtraction,
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According to Inequality of Arithmetic and Geometric Means,
∑n

i=1 mse1 ⩾ n (
∏n

i=1 msei)
1
n , which means the result of

(a) is higher than (b).
We further design a numerical experiment. We choose msei ∈ [0.003, 0.011] and n ∈ [200, 400] based on the previous

experiment results, and deploy the Monte Carlo experiments with iterations of 10000. The result is shown in Figure S3. As
can be seen, the error of different calculation is normally distributed in (0.2, 0.34). Therefore, jointly considering the error
reported in Section S3, we do not take the accuracy gap less than 0.5dB as an improvement.

S5. Visualization

We provide visualization of more results in Figure S4.
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Figure S4. Visualization of more results.
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