
Appendix

A. Motion Forecasting Model
In Sec. 4.1, we mentioned that a forward and a backward

MultiPath++ are trained for generating MoDAR points. In
this section, we provide more details about training and
evaluating the MultiPath++ models.

Close the domain gap between WOMD and WOD.
When constructing Waymo Open Motion Dataset (WOMD)
and training the motion forecasting models, people in-
tentionally mines the interesting trajectories, such as the
following pairwise cases: merges, lane changes, unpro-
tected turns, intersection left turns, intersection right turns,
pedestrian-vehicle intersections, cyclist-vehicle in intersec-
tions, intersections with close proximity, and intersections
with high accelerations [9]. Different from WOMD, most
trajectories in Waymo Open Dataset (WOD) are less inter-
esting: cars are usually parked or moving with a constant
velocity [39].

Therefore, to close the trajectories sampling gap, when
training MultiPath++ [42] on WOMD, we change the origi-
nal sampling strategy to a dense sampling strategy, which
uses all tracks for training instead of sampling the inter-
esting tracks. Tab. 6 shows the performance comparison
when training with different sampling strategies and test-
ing on different dataset. When training with the original
WOMD, the results are better on the original WOMD val-
idation set. This is because both original WOMD training
and validation sets sample the interesting trajectories. How-
ever, when training with the dense sampled WOMD, the
results on WOD validation set is better. For example, the
Average Displacement Error (ADE) is reduced from 1.83 to
1.17 on WOD validation set, by changing the original sam-
pling strategy to the dense sampling strategy.

Forward and Reverse Motion Forecasting Models. Be-
sides the past point cloud sequence, the offboard detection
set up also takes the information from the future point cloud
sequence. To propagate future object information to the
current frame, we train a reverse motion forecasting model.
Specifically, we prepared the reversed training set based on
the WOMD, and also prepared the reversed WOD for gen-
erating MoDAR points. When preparing the training set,
we resplit all 91 frame trajectories to 11 frame input track
and 80 frame ground truth track as training label. Different
from the forward dataset, the backward dataset take the last
11 frames as the input, and guide the model to predict the
first 80 frame trajectories. Besides, we reverse the veloc-
ity vector of each object accordingly. When preparing the
WOD inference set, instead of using the original timestamp
Toriginal, we assign a virtual (negative) timestamp Tvirtual for

each detection. The timestamp will be normalized before
feeding into the motion forecasting models. After we re-
assign the virtual timestamp to each detection box, we pro-
ceed the tracking and motion forecasting as forward coun-
terpart. Finally, we convert the virtual timestamp back to the
original timestamp by Toriginal = �Tvirtual + c. Finally, we
compare the forward and reverse motion forecasting model
in Tab. 7, showing that the reverse model is as good as (or
even slightly better than) the forward model.

B. Sharing 3D Detectors for LiDAR-MoDAR
detection and Motion Forecasting

As we illustrated in Fig. 3, our pipeline needs two 3D de-
tection models: (1) a LiDAR 3D object detection model to
prepare the input tracks for motion forecasting model, and
(2) a LiDAR-MoDAR 3D object detection model for the fi-
nal detection results. Although the architecture of these two
models are the same, their weights are trained separately. In
this section, we discuss the possibility to consolidate these
two models, i.e., use a shared model with the same weights
for both LiDAR-MoDAR detection and motion forecasting
input. We explore the impact to performance if the LiDAR-
MoDAR detector model takes the MoDAR points generated
by itself (MoDAR from its detection boxes).

The results are shown in Tab. 8. We use the 1-frame
SWFormer as the baseline model (#W1), and use an in-
house motion forecasting model that is slightly stronger
than MultiPath++ reported in the main paper. We observe
that when the MoDAR points are generated differently dur-
ing training and validation, the performance will drop. For
example, when training and evaluating with MoDAR points
generated by #W1, the L2 3D mAPH is 74.5. However, if
evaluating this model with the MoDAR points generated by
#W2, the performance drops by 3.7 (from 74.5 to 70.8) L2
3D mAPH, even though the MoDAR points from #W2 is
more accurate than #W1. We also observe that retraining
the detector model again helps reduce this gap. Specifi-
cally, for model #W3, when training with MoDAR points
from #W2 and evaluate with MoDAR points from #W3, the
performance only drops by 1.4 (from 74.8 to 73.4) L2 3D
mAPH, which is smaller than the 3.7 L2 3D mAPH gap
for model #W2. Therefore, we hypothesize iterative train-
ing can potentially mitigate this problem. However iterative
re-training would make the training process more complex.
As a future work, we can explore other techniques (such as
adding noise to MoDAR points during training, or generat-
ing MoDAR points on-the-fly) to improve the robustness of
taking MoDAR points from different models.

C. Implementation Details of Detectors
For CenterPoints and SWFormer LiDAR-only models,

we apply data augmentations during training following the



Training Set Validation Set ADE FDE minADE minFDE

WOMD
(Original)

WOMD Val. 3.34 10.2 1.40 4.01
WOD Val. 1.83 9.22 0.82 3.67

WOMD
(Dense)

WOMD Val. 3.61 11.1 1.42 3.74
WOD Val. 1.17 5.45 0.55 2.27

Table 6. Compare different sampling strategies when training the motion forecasting model, MultiPath++, on Waymo Open Motion Dataset
(WOMD). We test the trained model on the validation set of both WOMD and WOD. We observe that the dense sampling strategy leads to
lower error on WOD validation set. ADE, FDE, minADE, and minFDE are evaluation metrics (lower is better) for the motion forecasting
task.

ADE FDE minADE minFDE

Forward MP++ 1.17 5.45 0.55 2.27
Reverse MP++ 1.11 4.70 0.51 1.76

Table 7. Compare the performance of the forward and the reverse motion forecasting models. We observe that the reverse motion forecast-
ing model is as good as (or even slightly better than) the forward one.

Model Model MP++ inputs Veh. L1 3D Veh. L2 3D Ped. L1 3D Ped. L2 3D L2 3D mAPHID @train @eval AP APH AP APH AP APH AP APH

#W1 SWFormer [40] - - 77.0 76.5 68.3 67.9 80.9 72.3 72.3 64.4 66.2

#W2 +MoDAR #W1 #W1 83.2 82.6 75.9 75.3 84.0 80.5 76.7 73.7 74.5 (+8.3)
#W2 80.2 79.6 73.2 72.6 80.0 76.0 72.7 69.0 70.8 (+4.6)

#W3 +MoDAR #W2 #W2 83.6 83.0 76.4 75.9 84.4 80.8 77.1 73.7 74.8 (+8.6)
#W3 82.3 81.7 75.3 74.8 82.6 79.0 75.3 71.9 73.4 (+7.2)

Table 8. The performance comparison when generating MoDAR points by different models during evaluation. We observe that using
different model to (feed to MP++ as inputs to) generate MoDAR points during training harms the final detection performance. Iterative
training can mitigate this performance drop.

original SWFormer implementation [40]: randomly rotat-
ing the world by yaws, randomly flipping the world along
y-axis, randomly scaling the world, and randomly dropping
points. For the MoDAR-LiDAR fusion model, we first com-
bine MoDAR and LiDAR points together, and then apply
data augmentation to the fused point cloud. Note that these
data augmentation only change the 3D coordinate of points,
but keep the point feature unchanged.

D. MoDAR-LiDAR Fusion
Late fusion implementation details. We implemented
the MoDAR-LiDAR late fusion by a weighted box fusion
strategy [37]. Since LiDAR signal shows better perfor-
mance, we set the weight of the LiDAR predictions as 0.9
and set the weight of MoDAR predictions as 0.1. We finally
keep top 300 boxes sorted by the confidence scores.

Fusing MoDAR from different frames. In Tab. 5, we
directly get the detection results from MoDAR. In this sec-

tion, we introduce more details about how to generate detec-
tion boxes from MoDAR. As we mentioned, each MoDAR
point represents a predicted 3D box. The location of the
MoDAR point is the predicted center of the object, while the
object size is stored in the MoDAR point feature. Therefore,
we have a large number of 3D boxes predicted by different
motion forecasting models. We also use the weighted box
fusion strategy [37] to fuse these boxes together. Specif-
ically, the boxes generated by recent predictors will have
higher weights. Take the 5 ⇥ 2 predictions in Tab. 10 as an
example: we take the boxes from the closest 5 past and 5 fu-
ture predictors, with the weight of 1.0, 0.8, 0.6, 0.4, and 0.2.
The results are shown in Tab. 10, and we call this method
as late fusion because it is a box-level fusion strategy. We
observe that using the closest 5 past and 5 future predictors
achieves the best results. Fusing boxes from more predic-
tors does not help because the long-term predictors predict
less accurate boxes.

On the other hand, in this section, we also explore the



Model Frame Offline Veh. L1 3D Veh. L2 3D Ped. L1 3D Ped. L2 3D L2 3D mAPH[-p, +f] Method? AP APH AP APH AP APH AP APH

MVF++ [33]† [ -4, 0] 79.7 - - - 81.8 - - - -
+3DAL [33] [-1, 1] 3 84.5 84.0 75.8 75.3 82.9 79.8 73.6 70.8 73.1

LidarAug [16]⇤ [ -2, 0] 81.4 80.9 73.3 72.8 84.1 80.4 76.5 72.9 72.9
+MoDAR [-91, 91] 3 86.3 85.8 79.5 79.0 87.7 84.6 81.1 78.0 78.5

Table 9. MoDAR based on a stronger detection LidarAug [16]. †: ensemble with 10 times test-time-augmentation. ⇤: our re-
implementation.

Number of Fusion Veh. L2 Ped. L2
Predictions Method AP APH AP APH

1 ⇥ 2 Late 65.6 65.0 69.6 63.7
5 ⇥ 2 Late 67.4 66.8 69.6 63.8

10 ⇥ 2 Late 67.1 66.5 62.9 57.6
15 ⇥ 2 Late 66.1 65.6 52.5 48.2

5 ⇥ 2 Early 70.3 68.6 74.5 70.2
10 ⇥ 2 Early 70.4 69.3 75.5 71.4
20 ⇥ 2 Early 71.2 70.5 75.8 72.0
40 ⇥ 2 Early 70.9 70.2 74.8 70.8
80 ⇥ 2 Early 69.0 68.4 74.3 70.3

Table 10. Fusing MoDAR from different predictors. We compare
the early and the late fusion strategies, and explore to fuse different
number of predictions (”⇥2” means fusing the predictions from
both past and future predictors).

early fusion strategy to fuse the MoDAR points from differ-
ent predictors. Specifically, we put all MoDAR points (but
no LiDAR points) as the input of the 3D object detection
model. According to the results shown in Tab. 10, early fu-
sion is more effective than the late fusion, and it can take the
MoDAR points from more predictors even if the predictors
are not close to the current frame. For example, our best
MoDAR-only early fusion model achieves 70.5 Vehicle L2
APH and 72.0 Pedestrian L2 APH, which is already bet-
ter than the LiDAR-only model with 69.7 Vehicle L2 APH
and 70.1 Pedestrian L2 APH (shown in Tab. 5 in the main
paper).

E. Latency
In this section, we compared the latency of our MoDAR-

LiDAR fusion detection model with the LiDAR-only de-
tection model, based on our re-implementation of the 3-
frame SWFormer. We measure the latency using an in-
house GPU. The average latency of our baseline 3-frame
SWFormer is 172ms per frame. Note that this latency is
considerably higher than the 20ms latency reported in the

LiDAR MoDAR Latency (ms)
3 frames 7 172
5 frames 7 247
7 frames 7 276

3 frames 3 221

Table 11. Latency comparison between LiDAR-MoDAR fusion
and LiDAR-only models. The latency of LiDAR-MoDAR fusion
model is between 3-frame and 5-frame LiDAR-only models.

original SWFormer paper [39], which is mainly because our
research-oriented implementation is not optimized with re-
spect to the fused transformer kernels [39] and the hardware
devices are different. However, the comparisons below are
under the same hardware devices and under the same im-
plementation.

We measure the latency of three LiDAR-only models,
the LiDAR-only SWFormer with 3-, 5-, or 7-frame LiDAR
point cloud input, and our MoDAR-LiDAR fusion model
that takes 3-frame LiDAR point cloud and MoDAR points
from 160 predictors. The latency are shown in Tab. 11. As
we can see, the latency of our LiDAR-MoDAR fusion de-
tector is between 3-frame and 5-frame LiDAR-only model,
indicating the marginal computational complexity for us-
ing MoDAR points. Note that for the onboard system, we
can cache the motion forecasting signal with little overhead,
because motion forecasting is usually an important mod-
ule of an autonomous driving system. For the offboard
application, the latency of our motion forecasting model
MultiPath++ is 217 ms, which is similar to the detection
model. Compared with 3DAL [33] that takes 15min to pro-
cess a 200-frame sequence, our offboard system takes about
221 + 172 + 217 ⇤ 2 = 827ms to process a frame, i.e., 3
minutes per 200-frame sequence, which is about 5⇥ faster
than 3DAL. As future work, by implementing customized
kernels and optimizing network architectures, we expect to
further reduce the latency.



Model mAPH Veh AP/APH 3D Ped AP/APH 3D
L2 L1 L2 L1 L2

SWFormer 73.4 82.9/82.5 75.0/74.7 82.1/78.1 75.9/72.1
+MoDAR 78.9 88.0/87.5 81.2/80.8 85.8/82.5 80.2/77.0

Table 12. Compare WOD test set results with our baseline method,
SWFormer [40]. mAPH/L2 is the offical ranking metric on the
WOD leaderboard.

F. Results on the WOD Test Set
Tab. 12 shows vehicle and pedestrain detection results

comparison with our baseline, SWFormer [40]. We observe
a similar improvement compared with the results on vali-
dation set. This further indicates the effectiveness of our
proposed method.

G. Generalizing to Stronger Detectors
To show our method generalizes, we use LidarAug-

SWFormer [16] as a stronger baseline. Shown in Tab. 9,
adding MoDAR leads to consistent gains and significantly
outperforms previous methods. For example, we achieves
78.5 L2 3D mAPH, which is significantly better 3DAL by
5.4 L2 3D mAPH.


