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In this supplementary material, we provide more details
of implementation (Sec. A), proposed datasets (Sec. B),
additional experimental results (Sec. C) and discussions
(Sec. D).

A. Details of Implementation
A.1. BRDF Model

In Sec. 3.2 in the main paper, f; and f; are defined as:

A DFG
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where A is albedo; [ denotes light direction; n denotes nor-
mal; v denotes view direction; D denotes Normal Distri-
bution Function (NDF); F' denotes Fresnel function and G
is the Geometry Factor. We adopt a simplified D, F' and
G [6,12].

The specular D:

Figure 1. Overview of our synthetic dataset. It contains diverse
materials and objects.

Table 1. Comparison of costs. N denotes the number of images.
D= o? Our method achieves competitive performance on costs compared
w((n- h)2(a2 1)+ 1)2’ to the highly efficient method, NVDIFFREC [14]. The perfor-
2) mance of TSDRx* [15] is reported by their paper.
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(R+1)2 We use neural networks to predict the depth image [5]
k= s and semantic segmentation [2] for each input image. The
3D mesh of whole scene is reconstructed with depth images
and poisson surface reconstruction algorithm [7]. The room
*Co-corresponding authors. segmentation is calculated by occupancy grid [3].
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Figure 2. Overview of our challenging real dataset. Our dataset consists of 10 Full-HDR indoor scenes with extremely complex lighting,

geometry and materials.

Table 2. Detailed quantitative comparison on our challenging real dataset. Although NVDIFFREC [14] reaches similar performance
to our method, it fails to distinguish the ambiguity between albedo and roughness.

Method InvRender [ 18] NVDIFFREC [14] NelLF [17] Ours
PSNRT SSIMt MSE| PSNR{ SSIM{ MSE| PSNRt SSIMt MSE] PSNR{ SSIM{ MSE|
Scene 1 23.4773 0.8367 0.0045 24.6780 0.8776 0.0034 23.5793 0.8405 0.0044 25.5872 0.8984 0.0028
Scene2 22.3096 07603 0.0059 23.6182 0.8092 0.0043 22.5556 0.7691 0.0056 24.1521 0.8450 0.0038
Scene3 21.8565 0.7959 0.0065 22.9661 0.8582 0.0050 21.8175 0.7994 0.0066 25.3452 0.8820 0.0029
Scene4 21.0931 0.7443 0.0078 223015 0.8150 0.0059 21.0957 0.7464 0.0078 23.0425 0.8451 0.0050
Scene5 23.0713 07764 0.0049 23.8165 0.8012 0.0042 23.3284 0.7897 0.0046 24.2985 0.8367 0.0037
Scene 6 23.0081 0.7885 0.0050 25.0760 0.8682 0.0031 22.7081 0.7860 0.0054 26.1958 0.8943  0.0024
Scene7 20.5928 0.7395 0.0087 22.0116 0.8149 0.0063 20.5794 0.7512 0.0088 23.1939 0.8481 0.0048
Scene 8 20.8998 0.7083 0.0081 25.8481 0.8816 0.0026 20.4024 0.6965 0.0091 25.3344 0.8542  0.0029
Scene9  21.2149 0.7474 0.0076 24.0453 0.8615 0.0039 20.7916 0.7331 0.0083 24.3945 0.8732 0.0036
Scene 11 224695 0.7710 0.0057 23.1026 0.8015 0.0049 22.4023 0.7747 0.0058 24.5486 0.8461 0.0035
Mean  21.9993 0.7668 0.0065 23.7464 0.8389 0.0044 21.9260 0.7687 0.0066 24.6093 0.8622 0.0035

We use 2048 samples to precompute the irradiance of
sampled surface points. The NIrF is trained for 2000 epochs
with the batch size of 16 and the total size of 1024 and we
use the Adam optimizer [8] with a learning rate of 1e-4. The
resolution of IrT is 1024 x1024.

In material estimation, we use the Adam optimizer [8]
with a learning rate of 3e-2 for 40 epochs in all three stages.
We set B.5q as 10 in stage 1, set B,y as 1 in stage 2 and
set Bssr as 0.1 in stage 3. The resolution of albedo tex-
ture to be optimized is 2048 x2048 and the resolution of
roughness texture to be optimized is 4096x4096. We use
16 samples to re-render the specular component in material
estimation. Considering the efficiency of optimization and
the natural global illumination of proposed TBL, we apply
nvdiffrast [9] with deferred shading to backward the gra-
dient of image-space materials into corresponding textures.
We note that nvdiffrast is orthogonal to our pipeline, which
can be replaced by other differentiable renderers [4, 10, 13].
The pre-computed IrT takes around 10 minutes and the op-
timization process of material takes around 20 minutes.

B. Details of Proposed Datasets
B.1. Synthetic Dataset

As described in Sec. 4.1 in the main paper, to enable
more comprehensive analysis, we create a synthetic scene
with diverse material and light sources with a path tracer
[11]. As shown in Fig. 1, the virtual scene is consists of
three rooms and several objects with different materials. We
generate 40 HDR panoramas, and corresponding poses, se-
mantic segmentation, depth, albedo and roughness annota-
tions, and the entire geometry. We use 24 views as input and
others as novel views for the novel view synthesis.

B.2. Full-HDR Real Dataset

As described in Sec. 4.1 in the main paper, we capture 10
Full-HDR real indoor scenes due to the lack of Full-HDR
real dataset. We first use neural networks to predict the cor-
responding depth images, and leverage SFM and MVS [16]
to reconstruct the 3D mesh with the RGB texture. As shown
in Fig. 2, 3D indoor scenes are reconstructed. Note that each
indoor scene only contains 10 to 20 images. Therefore, the
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Figure 3. Additional samples of applications. We edit the roughness of floors in Scene 1, Scene 4 and Scene 6, and the albedo for all
scenes. Compared to source images, our method still reproduces realistic and consistent lighting effects after editing.
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Figure 4. Additional samples of qualitative comparison on synthetic dataset. Our method reconstructs globally-consistent and
physically-reasonable SVBRDFs while other approaches struggle to reduce ambiguity of materials.
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Figure 5. Ablation study of three-stage material optimization on synthetic dataset.

inverse rendering on these real scenes is extreme challeng-
ing.

C. Details of Experiments

C.1. Postprocessing

We change the albedo and roughness of ceiling and
lamps as a postprocessing on synthetic dataset. We empir-
ically found that the predictions of each approach on these
regions are easily prone to local minimal. Based on the ob-
servation that the roughness and albedo of ceiling is high
in most scenes, we set the roughness of ceiling as 0.8 and
the albedo as 0.9. Please note that we update the results for
each method on synthetic dataset.

C.2. Results on Costs

We compare the time cost and memory cost of mate-
rial optimization to the multi-view inverse rendering meth-
ods in Tab. 1. Please note that all methods apply our effi-
cient hybrid lighting representation except for NeILFx [17].
With our hybrid lighting representation, the efficiency of
NelLF [17] is significantly improved. In material optimiza-
tion, our approach achieves the comparable performance
on costs to the previous highly efficient method, NVIDF-
FREC [14]. The calculation of IrT with a resolution of
1024 x 1024 takes 10 minutes and costs around 2 GB GPU

memory. The optimization process of material takes 20 min-
utes and also costs around 2 GB GPU memory. Note that
the differentiable path tracing-based method [15] takes 12
hours per scene with a significant amounts of GPU mem-
ory [15].

C.3. Additional Results for Applications

In Sec.4.5 in the main paper, we demonstrate the capa-
bility of our method on several mixed-reality applications,
such as material editing, editable novel view synthesis and
relighting. We show more results on these applications in
Fig. 3. Benefiting from our triangle mesh and PBR materials
output, which is compatible with standard engines, we can
easily edit the properties in a physical manner. We change
the albedo or roughness according to the semantic segmen-
tation, e.g., the wooden floors become ceramic floors by
changing the albedo of floors. Furthermore, we are able to
render physically-reasonable novel views based on our 3D
geometry and material textures, which is orthogonal to ma-
terial editing, as shown in third column in Fig. 3. Last but
not least, the entire scene can be rendered under new differ-
ent illumination, as shown in last column in Fig. 3. Please
refer to supplementary videos for more animations.
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Figure 6. Ablation study of hybrid lighting representation.
From top to down: Scene 1, Scene 2, Scene 3, Scene 4, Scene
5, Scene 6, Scene 7, Scene 8 and Scene 9. IrT recovers detailed
albedo with less artifacts.

C.4. Additional Results on Synthetic Dataset

We provide more qualitative comparisons on synthetic
dataset in Fig. 4. Our approach is superior than other in-
verse rendering methods on roughness estimation. And our
physically-reasonable and globally-consistent SVBRDFs
are able to produce realistic novel views. Note that
NelLF [17] with our hybrid lighting representation more
successfully disentangles the ambiguity between materials
and lighting than NelLFx [17] with their implicit lighting
representation.

C.5. Additional Results on Real Dataset

As shown in Tab. 2 in the main paper, our approach
outperforms previous neural rendering methods. The de-
tailed results of each real scene are shown in Tab. 2.
Note that we do not compare to PhyIR [I2] with re-

Table 3. Ablation study of the quality of semantics.

Property (PSNR) 0*0 16%16 32%32 64%64  128%128 256*256

Albedo 20.4169 20.7858 20.7353 21.0199 20.8364  19.7991
Roughness 202132 19.8076 19.9088 19.8964 17.8038  13.5650

rendering error because it uses LDR panoramas as input.
Although NVDIFFREC [14] reaches competitive perfor-
mance to our method, it fails to distinguish the ambigu-
ity between albedo and roughness in Fig. 7, Fig. 8 and
Fig. 9. Our approach is able to reconstruct physically-
reasonable and globally-consistent SVBRDEF. Such proper-
ties re-render similar specular reflectance to GT with less
wrong highlights in albedo, which proves we disentangle
the ambiguity of materials successfully.

C.6. Additional Results for Ablation studies

We showcase the effectiveness of our three-stage mate-
rial optimization on synthetic dataset in Fig. 5. As described
in Sec. 4.4 in the main paper, the Baseline only update the
highlight regions of roughness. Without Stage I, the rough-
ness leads to incorrect result. Without Stage II, the perfor-
mance of roughness estimation will decrease dramatically.
Without Stage II1, the abledo is over-blur and the roughness
is unsmooth.

As shown in Fig. 7 in the main paper, we show one sam-
ple for ablating the effectiveness of hybrid lighting repre-
sentation. We show more results in Fig. 6. The proposed
IrT recovers detailed albedo with less noise.

Additionally, we show more ablation studies of our ma-
terial optimization strategy on real dataset in Fig. 10 and
Fig. 11.

Finally, we show the performance of our method as the
semantic segmentation mask becomes less accurate. We
randomly change a cube region with wrong semantic labels
for each input image. As shown in Tab. 3, our method is
surprisingly robust as the length of cube increases.

C.7. Bad Cases

As described in Sec. 4.6 in the main paper, our method
lead to recover bright albedo and low roughness when the
light source is not captured. In Scene 8 in the Fig. 8, we re-
construct over-high albedo and over-low roughness nearby
the window because the sun is not captured. The learning
prior will be helpful for disentangling the ambiguity be-
tween materials in such cases.

D. More Discussions
D.1. Limitations and Future works

There are some limitations of our method. First, we
rely on the HDR images to recover the proposed lighting
representation for large-scale scene. To lift this limitation,
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Figure 7. Additional samples of qualitative comparison in the 3D mesh view on challenging real dataset. From top to down: Scene 2,
Scene 3, Scene 4 and Scene 5. Our method reconstructs globally-consistent and physically-reasonable SVBRDFs while other approaches
struggle to produce inconsistent results and reduce ambiguity of materials.

the joint optimization of lighting and material will be ex- we have to leverage the learning prior to alleviate the am-
plored. Second, our VHL-based sampling and semantics- biguity of materials. Finally, although the geometry recon-
based propagation requires that light sources are visible in structed by MVS is enough for our method, a more accurate
the scene. If light sources are not captured, our method leads geometry would lead to more accurate predictions.

to recover bright albedo and low roughness. In such cases,
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Figure 8. Additional samples of qualitative comparison in the 3D mesh view on challenging real dataset. From top to down: Scene 7,
Scene 8, Scene 9 and Scene 11. Our method reconstructs globally-consistent and physically-reasonable SVBRDFs while other approaches
struggle to produce inconsistent results and reduce ambiguity of materials.

D.2. TBL and Path tracing

The main pros of TBL is much less time and memory
costs, compared to the path tracer [1, 1 5]. Our method only
takes 30 minutes while [15] takes 12 hours per scene, re-
ported in their paper. Moreover, the accuracy and robust-
ness of TBL also is higher than the path tracer. If the recur-

sive rendering equation can be computed instantly, the high
gradient caused by the recursion and low samples in path
sampling still do not ensure steady convergence [15]. On
the one hand, our TBL models the complex light transport
as a relatively simple local shading, which ensures more
robust optimization. On the other hand, the global illumi-



nation of path tracing is finite-bounce while the TBL rep-
resents infinite-bounce global illumination, corresponding
to real world. Therefore, the global illumination of TBL is
more accurate.

In some cases, both our TBL and the path tracer do not
work well, e.g., some important light sources or regions are
missing, transparent/translucent objects, participating me-
dia and caustics. The differentiable volume rendering and
neural rendering will be nice choices for such hard cases. I
agree that some effects, e.g., a chain of specular reflections
and retroreflections could be solved well using a path tracer
while our TBL fails to model such effects. However, such
effects are rare in most indoor scenes.

D.3. Broader Impacts

As described in the main paper, our method is able
to produce realistic and physically-reasonable images with
modified materials or illumination. Therefore, creating
deepfake is a major potential negative impact. We can limit
the target scenarios to prevent malicious use cases.
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Figure 9. Additional samples of qualitative comparison in the 2D image view on challenging real dataset. From left to right and from
top to down: Scenel, Scene2, Scene3, Scene4, SceneS, Scene6, Scene7 and Scene 11. Red denotes the Ground Truth image.
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Figure 10. Additional samples of ablation study of material optimization on challenging real dataset. From top to down: Scene 1,
Scene 2, Scene 3 and Scene 4.
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Figure 11. Additional samples of ablation study of material optimization on challenging real dataset. From top to down: Scene 1,
Scene 2, Scene 3 and Scene 4.
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