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A. Architecture of INN
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Figure 1. Detailed architecture of the one-stage mapping
model.

A.1. One-Stage Mapping

The detailed architecture of the one-stage mapping
model is illustrated in Fig. 1. We follow the architecture of
RealNVP [2]. The model consists of multiple basic blocks
to increase capacity. The input vector u of the block is split
into two parts, u1 and u2, which are subsequently trans-
formed with coefficients exp(si) and ti (i ∈ {1, 2}) by the
two affine coupling layers:

v1 = u1 ⊙ exp(s2(u2,β)) + t2(u2,β), (1)
v2 = u2 ⊙ exp(s1(v1,β)) + t1(v1,β), (2)

where v = [v1,v2] is the output vector of the block and ⊙
denotes element-wise multiplication. The coefficients of the
affine transformation can be learned by arbitrarily complex
functions, which do not need to be invertible. The invert-
ibility is guaranteed by the affine transformation in Eq. 1
and 2. The scale network si is a 3-layer MLP with the hid-
den dimension of 512, and the translation network ti has the
same architecture followed by a tanh activation function.

A.2. Twist-and-Swing Mapping

The detailed architecture of the twist-and-swing map-
ping model is illustrated in Fig. 2. The two-step mapping is
implemented by two separate invertible networks. The first
network has the same architecture as the one-stage map-
ping model, while its input is only the joint positions, and
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Figure 2. Detailed architecture of the twist-and-swing mapping
model.

the output is the swing rotations. The second network re-
moves the shape condition and directly transforms the twist
and swing rotations to complete rotations.

B. Implementation Details

In our experiments, we use the weights pretrained on
COCO [9] 2D pose estimation task for the initialization of
the CNN backbone to accelerate convergence. The scalar
coefficients in the loss function are λinv = 1, λfwd = 1,
λind = 1, λi

bnd = 0.1, λf
bnd = 1. We first train the CNN

backbone following HybrIK [8] to obtain initial joint posi-
tions and twist rotations. Then we solely train NIKI and
freeze the parameters of the CNN backbone. During train-
ing, we follow EFT [3], SPIN [6], and PARE [5], which
use fixed data sampling ratios for each batch. We incor-
porate 50% Human3.6M and 50% 3DPW when conducting
experiments on the 3DPW and 3DPW-XOCC datasets. For
experiments on the 3DPW-OCC and 3DOH datasets, we in-
corporate 35% COCO, 35% Human3.6M, and 30% 3DOH.
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Figure 3. Detailed architecture of the temporal INN.

3DPW

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓ ACCEL ↓
VIBE [4] 82.9 51.9 99.1 23.4
MEVA [10] 86.9 54.7 - 11.6
TCMR [1] 86.5 52.7 102.9 7.1
MAED [15] 79.1 45.7 92.6 17.6
D&D [7] 73.7 42.7 88.6 7.0

NIKI (Frame-based) 71.3 40.6 86.6 15.1
NIKI (Temporal) 71.2 40.5 86.3 12.3

Table 1. Quantitative comparisons with state-of-the-art tem-
poral methods on the 3DPW dataset. Symbol “-” means results
are not available.

C. Temporal Extension of NIKI

C.1. Architecture

We extend the invertible network for temporal input. We
design a spatial-temporal INN model to incorporate tempo-
ral information to solve the IK problem. For simplicity, we
use the basic block in the one-stage mapping and twist-and-
swing mapping models as the spatial INN. Self-attention
modules are introduced to serve as the temporal INN and
conduct temporal affine transformations. The temporal in-
put vectors {ut}T1 are split into two subsets, {ut}⌊T/2⌋

1 and
{ut}T⌊T/2⌋+1, which are subsequently transformed with co-
efficients exp(si) and ti (i ∈ {1, 2}) by the two affine cou-
pling layers like Eq. 1 and 2. We adopt self-attention lay-
ers [13] as the temporal scale and translation layers. The
detailed network architecture of the temporal INN is illus-
trated in Fig. 3.

C.2. Experiments of the Temporal Extension

We evaluate the temporal extension on both standard and
occlusion-specific benchmarks. Tab. 1 compares temporal
NIKI with previous state-of-the-art temporal HPS methods

3DPW-XOCC

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓ ACCEL ↓
HybrIK [8] 148.3 98.7 164.5 108.6
PARE∗ [5] 114.2 67.7 133.0 90.7
PARE∗ [5] + VIBE [4] 97.3 60.2 114.9 18.3

NIKI (Frame-based) 110.7 60.5 128.6 74.4
NIKI (Temporal) 88.9 52.1 98.0 17.3

Table 2. Quantitative comparisons with state-of-the-art tem-
poral methods on the 3DPW-XOCC dataset. Symbol ∗ means
finetuning on the 3DPW-XOCC train set.
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Figure 4. Acceleration error curve.

on the standard 3DPW [14] dataset. Notice that we do not
design complex network architecture or use dynamics infor-
mation. Our temporal extension simply applies the affine
coupling layers to the time domain. It shows that our sim-
ple extension obtains better accuracy than state-of-the-art
dynamics-based approaches.

Tab. 2 presents the performance on the occlusion-specific
benchmark. We compare the temporal extension with a
strong baseline. The baseline combines PARE [5] with the
state-of-the-art temporal approach, VIBE [4]. We first use
the backbone of PARE [5] to extract attention-guided fea-
tures. Then we apply VIBE [4] to incorporate temporal
information to predict smooth and robust human motions.
Temporal NIKI outperforms the baseline in challenging oc-
clusions and truncations.

Fig. 4 present the acceleration error curves of the single-
frame and temporal models in the 3DPW-XOCC dataset. We



10 15 20 25 30 35 40 45 50
Joint Noise (mm)

5

10

15

20

25

30

35

40

45
A

ve
ra

ge
 J

oi
nt

 E
rr

or
 (

m
m

)

Analytical IK
MLP-based IK
NIKI

Figure 5. Noise sensitivity analysis of analytical IK, MLP-based
IK and NIKI.
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Figure 6. Improvement over different occlusion levels.

can observe that the temporal model can improve motion
smoothness.

D. Noise Analysis
We assess the robustness of three different IK algo-

rithms: analytical IK, MLP-based IK, and NIKI. We evalu-
ate their performance on the AMASS dataset [11] with noisy
joint positions. As shown in Fig. 5, MLP-based IK is more
robust than the analytical IK when the noise is larger than 30
mm. However, MLP-based IK fails to obtain pixel-aligned
performance when the noise is small. NIKI shows superior
performance at all noise levels.

E. Collision Analysis
To quantitatively show that the output poses from NIKI

are more plausible, we compare the collision ratio of
mesh triangles [12] between HybrIK and NIKI on the
3DPW-XOCC dataset. NIKI reduces the collision ratio from
2.6% to 1.0% (57.7% relative improvement).

F. Occlusion Analysis
We follow the framework of [5, 17] and replace the clas-

sification score with an error measure for body poses. We
choose MPJPE as the error measurement. This analysis is
not limited to a particular network architecture. We apply it
to the state-of-the-art pixel-aligned approach, HybrIK [8],

3DPW 3DPW-XOCC

MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

NIKI 71.3 40.6 110.7 60.5
+ Heatmap Cond. [16] 71.1 40.4 110.8 60.6

Table 3. Integrate heatmap condition.

and the direct regression approach, PARE [5]. The visual-
izations of the error maps are shown in Fig. 7 and 8. Warmer
colors denote a higher MPJPE. It shows that NIKI is more
robust to body part occlusions.

Additionally, we follow the official AGORA analyses to
compare the performance in different occlusion levels. As
shown in Fig. 6, in the low occlusion level (0-10%), NIKI
brings 6.5 mm MPJPE improvement. The improvement
reaches a peak (13.3 mm) in the medium occlusion level
(20-30%). For the high occlusion level (70-80%), the im-
provement falls back to 10.2 mm. We can observe that NIKI
is good at handling medium occlusions. There is still a lot
of room for improvement in highly occluded scenarios.

G. Heatmap Condition
We follow Wehrbein et al. [16] and add heatmap con-

dition in the INN. As shown in Tab. 3, it brings 0.2 mm
improvement on the 3DPW dataset. However, it is 0.1 mm
worse on the 3DPW-XOCC dataset. We assume this is be-
cause heatmap is not reliable under server occlusions.

H. Inference Time and Model Size
We benchmark the inference time of the analytical IK

algorithm, HybrIK [8] and NIKI with an RTX 3090 GPU
with a batch size of 1. The latency of HybrIK is 26 ms and
NIKI is 8 ms, respectively. HybrIK is much slower since it
needs to solve the rotations iteratively along the kinematic
tree. For the model size, the total parameters of NIKI is
29.01M.

I. Details of 3DPW-XOCC
3DPW-XOCC is a new benchmark for human pose and

shape estimation with extremely challenging occlusions and
truncations. The dataset is augmented from the original
3DPW dataset by adding temporally-smooth synthetic oc-
clusions and truncations. To ensure temporal smoothness,
we choose keyframes at an interval of 8 frames, and the rest
frames are generated by linearly interpolating the clipping
and occlusion of the keyframes. In the keyframe, the im-
age is randomly clipped to ensure that at least one body part
is outside the clipped image with a possibility of over 2/3.
A square area that takes up to 30% of the clipped image is
replaced by gaussian noise to serve as occlusion. The eval-
uation protocol and the split of the dataset are unchanged.



J. Limitations and Future Work
Our work has several limitations. First, NIKI does not

include body shape refinement. Human body shape esti-
mation is also challenging in occlusion scenarios. The in-
correct body shape would cause incorrect distal joints re-
construction. For example, even the knee and ankle rota-
tions are correct, the wrong leg length will cause a wrong
ankle position. Exploiting the bone length information in
joint positions can help refine β for better pose and shape
estimation. Second, NIKI does not use the scene informa-
tion to separate the pose error. The initial joint positions
could be physiologically plausible but do not match the in-
put scene. Using scene constraints can reduce implausi-
ble human-scene interactions and further improve robust-
ness. Third, the training of NIKI relies on the diversity
of datasets. To accurately built the bijective mapping, the
training data need to be diverse enough. We believe these
limitations are exciting avenues for future work to explore.

K. Qualitative Results
Additional qualitative results are shown in Fig. 9 and

10. More results on the Internet videos are provided in
demo.mp4 in the supplementary files.
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Figure 7. Occlusion Sensitivity Maps of PARE [5] and NIKI.
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Figure 8. Occlusion Sensitivity Maps of HybrIK [8] and NIKI.
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Figure 9. Qualitative comparison with PARE [5].
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Figure 10. Qualitative comparison with HybrIK [8].
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