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This document provides the supplementary material to
our proposed neural video compression (NVC) with diverse
contexts, i.e., DCVC-DC model.

1. Network Structure
Our DCVC-DC is based on DCVC-HEM [9], but fo-

cuses more on exploiting Diverse Contexts to further boost
compression efficiency. The learning of hierarchical quality
pattern is mainly performed in training phase via adjusting
the distortion weight in the loss. Here we describe other
implementation details in network structure.

Group-based offset diversity. In this process, we will
predict a total of G × N offsets dt, where G is the group
number and N is offset number for each group. In the im-
plementation, the channel dimension of propagated feature
Ft−1 is 48. It is divided into 16 groups and each group
has 2 offsets, i.e., G=16 and N=2. The detailed network
structure of offset prediction is shown in Fig. 1. For convo-
lution layer, the (K, Cin, Cout, S) indicate the kernel size,
input channel number, output channel number, and stride,
respectively The inputs include the decoded motion vector
(MV) v̂t. In addition, the previous reconstructed frame x̂t

and propagated Ft−1 are also warped and fed as the aux-
iliary information. The outputs include the residual offsets
dt. dt adds the v̂t to get the final offsets ot. In addition,
the corresponding masks mt are also generated. It is noted
that, the first convolution layer will reduce the resolution by
2x for acceleration. After the last convolution layer, we use
bilinear to upsample them back to original resolution.

Quadtree partition-based entropy coding. The pro-
posed entropy coding can be classified into 4 steps. The
network structure is shown in Fig. 2. As shown in this fig-
ure, the quantized latent representation ŷt−1 from the previ-
ous frame, hyper prior ẑt, and temporal context Ct are also
used for predicting the distribution parameters for all ŷt in
the 4 steps. In addition, all positions coded in previous steps
will also be used for predicting the distribution parameters
of the positions coded in the current steps. In this process, to
reduce the model parameters, most network blocks therein
use the shared weights, as shown in Fig. 2.

Structure optimization. As mentioned in the main pa-
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Figure 1. The network structure of offset prediction.
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Figure 2. The network structure of entropy model.
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Figure 3. The network structure of DepthConvBlock.
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Figure 4. The network structure of contextual encoder and de-
coder. The frame generator follows the decoder.

per, to reduce the computation cost, we widely adopt the
depthwise separable convolution. As shown in Fig. 2, the
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basic block in our entropy model is DepthConvBlock which
contains depthwise separable convolution. The structure of
DepthConvBlock is shown Fig. 3. In the DepthConvBlock,
except that the depthwise convolution layer is with 3x3 ker-
nel, all regular convolution layers use 1x1 kernel to further
reduce the computation cost.

In addition, we use the unequal channel number settings
for the encoder and decoder. The network structure of our
contextual encoder and decoder for frame coding is shown
in Fig. 4. From this figure, we can see that the propagated
feature Ft and the motion-aligned Ct with high resolution
are with 48 channel number. They are smaller than 64 used
in [9]. It can help us reduce the computation cost. At the
same time, the quantized latent representation ŷt uses 128
channel number, and it is larger than 96 used in [9]. This can
bring some compression ratio improvements as the latent
representation has larger capacity. By adjusting the chan-
nel number for features with different resolutions, a better
trade-off between compression ratio and computation cost
can be achieved. In Fig. 4, we follow [9, 12] and also adopt
the multi-scale contexts C2

t and C4
t , which are 2x and 4x

down-sampled temporal contexts. Their generation details
can be found in [9, 12]. The bottleneck residual block and
frame generator in Fig. 4 are similar with those in [9].

Our codec supports variable bitrates in single model.
For more precise rate adjustment, this paper proposes mov-
ing partial quantization operations to higher resolution. As
shown in Fig. 4, the quantization parameter qp is used for
controlling the bitrate via the user input. According to the
qp, the global quantization step qsglobalencoder is queried via the
learnable quantization parameter-to-quantization step table.
Then the learnable channel-wise qschencoder is used to mod-
ulate the quantization step for each channel. For yt at 16x
down-sampled resolution, the spatial-channel-wise quanti-
zation step qssct is applied before the rounding operation,
where the qssct for each frame is generated by the entropy
model, like [9]. During the decoding, the corresponding
inverse operations are applied. This multi-granularity quan-
tization mechanism originates from [9]. However, in [9],
global, channel-wise, and spatial-channel-wise quantization
steps are all applied in the 16x down-sampled resolution.
By contrast, we propose moving the global and channel-
wise to the 2x down-sampled resolution for finer-grained
adjustment. In addition, in our codec, the encoder and de-
coder have separate learnable global quantization step table
and channel-wise quantization step, which further enlarges
the flexibility. As shown in Fig. 5, we test 64 qs values
for our codec. From the curve, we can see that our codec
achieves very smooth rate adjustment in single model.

2. Test Settings
To conduct comprehensive comparisons, we compare the

NVCs and traditional codecs in both YUV420 and RGB

Figure 5. Smooth rate adjustment in single model.

colorspaces. The test pipeline is shown in Fig. 6.
YUV420. When testing YUV420 video, there is

no any colorspace conversion, as shown in Fig. 6.
For traditional codec, our benchmarks include HM [6],
VTM [14], and ECM [4]. The three codecs use
encoder lowdelay main10.cfg, encoder lowdelay vtm.cfg,
and encoder lowdelay ecm.cfg config files, respectively.
The parameters for each video are as:

• -c {config file name}
--InputFile={input video name}
--InputBitDepth=8

--OutputBitDepth=8

--OutputBitDepthC=8

--FrameRate={frame rate}
--DecodingRefreshType=2

--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32

--QP={qp}
--Level=6.2

--BitstreamFile={bitstream file name}

RGB. Except that HEVC RGB testset is in RGB format,
the raw formats of all other testsets are YUV420. Thus, to
test RGB video, we need to convert them from YUV420 to
RGB colorspace. Many existing NVC works use BT.601
(the default choice in FFmpeg) to conduct the conversion.
Actually, JPEG AI [2, 3] uses BT.709 for the colorspace
conversion. Thus, in the main paper, we follow JPEG
and also use BT.709 to convert the raw YUV420 video to
RGB colorspace when testing RGB video. In addition, it is
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Figure 6. Test pipeline in YUV420 and RGB colorspace, respec-
tively. The red line indicates the colorspace conversion.
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Figure 7. Comparison of different input colorspaces for tradi-
tional codec when testing RGB videos. For the bitrate comparison,
VTM-17.0 is used and tested on HEVC B dataset.

also noted that the raw YUV420 videos of HEVC datasets
[1, 5, 13] themselves are generated from RGB source using
BT.709. However, it is unfortunate that currently we cannot
access their raw RGB videos, and only have their YUV420
videos. Therefore, when testing RGB video, we should use
the same conversion manner (i.e., BT.709) to convert them
back from YUV420 to RGB.

It is noted that, when traditional codecs test RGB videos,
using YUV444 as the internal colorspace achieves better
compression ratio than directly using RGB, although the fi-
nal distortion is measured in RGB. Fig. 6 shows that the
RGB videos will be converted to YUV444 for higher com-
pression ratio when testing traditional codecs. The recon-

structed YUV444 videos will converted back to RGB for
distortion calculation.

Fig. 7 compares different test pipelines for traditional
codec in testing RGB videos. From this figure, we can
see that using YUV444 as the internal colorspace (i.e.,
setting 1) achieves the best performance, and other set-
tings have non-trivial bitrate increase. Many existing works
use setting 5 in Fig. 7. However, we can see that
there is 21.2% bitrate increase when compared with the
setting 1 we used. Thus, to configure the best tradi-
tional codecs, we use YUV444 as the internal colorspace.
For HM, VTM, and ECM, encoder lowdelay main rext.cfg,
encoder lowdelay vtm.cfg, and encoder lowdelay ecm.cfg
config files are used, respectively. The parameters for each
video are as:

• -c {config file name}
--InputFile={input file name}
--InputBitDepth=10

--OutputBitDepth=10

--OutputBitDepthC=10

--InputChromaFormat=444

--FrameRate={frame rate}
--DecodingRefreshType=2

--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32

--QP={qp}
--Level=6.2

--BitstreamFile={bitstream file name}

In addition, it is noted that ECM is still under develop-
ment. As it is mainly optimized for YUV420, currently
ECM-5.0 has several bugs on supporting YUV444 when us-
ing it to test RGB videos. We fixed them and verified the
encoding and decoding match. After the bug fix, ECM-5.0
performs better than VTM-17.0, and the bitrate saving over
VTM-17.0 is similar with that in YUV420. Thus, we be-
lieve the fix is reasonable for ECM-5.0 to support YUV444
coding.

3. Results in RGB colorspace with BT.601
Actually, when testing RGB videos, most existing NVC

methods ignore the conversion manner and directly use
BT.601 to conduct the conversion, because BT.601 is the
default choice of FFmpeg. To make comparison with more
existing NVCs, we also test our DCVC-DC under BT.601.
It is noted that our DCVC-DC does not need any retraining



Table 1. BD-Rate (%) comparison for RGB colorspace with BT.601. Quality is measured with PSNR. The anchor is VTM-17.0.

UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E HEVC RGB Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VTM-13.2 (from [9] ) 8.8 6.3 3.2 1.9 0.5 8.6 5.5 5.0

HM-16.20 (from [9] ) 48.8 51.2 43.5 40.9 35.8 59.3 51.1 47.2

DVCPro [11] 238.1 176.1 194.8 204.5 157.9 455.1 179.2 229.4

MLVC [10] 137.6 140.0 126.0 216.7 165.7 262.2 163.5 173.1

RLVC [15] 244.0 221.3 205.1 202.7 141.8 398.2 199.4 230.4

CANF-VC [7] 61.4 60.5 56.4 70.5 52.8 119.7 79.9 71.6

DCVC [8] 140.3 107.2 117.9 151.5 106.7 269.5 111.9 143.6

DCVC-TCM [12] 29.9 39.4 32.7 62.4 27.8 80.4 24.4 42.4

DCVC-HEM [9] –7.7 1.1 –1.1 16.9 –8.4 20.8 –9.9 1.7

Our DCVC-DC –21.0 –13.3 –13.7 –8.2 –27.9 –14.4 –27.6 –18.0

Table 2. BD-Rate (%) comparison for RGB colorspace with BT.601. Quality is measured with MS-SSIM. The anchor is VTM-17.0.

UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E HEVC RGB Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VTM-13.2 (from [9] ) 3.4 4.6 2.6 1.8 0.5 13.1 3.9 4.3

HM-16.20 (from [9] ) 37.2 46.3 40.2 39.4 36.0 59.3 44.7 43.3

DVCPro [11] 72.3 43.5 64.5 61.6 24.3 248.1 67.8 83.2

RLVC [15] 86.2 77.6 68.5 79.5 35.0 311.8 68.0 103.8

CANF-VC [7] 31.2 14.2 30.7 26.3 11.4 160.8 57.7 47.5

DCVC [8] 37.1 10.2 33.8 25.5 2.2 158.4 38.4 43.7

DCVC-TCM [12] –7.5 –19.3 –21.5 –21.1 –36.2 12.6 –22.2 –16.5

DCVC-HEM [9] –32.6 –42.7 –45.7 –42.5 –54.5 –28.2 –43.6 –41.4

Our DCVC-DC –37.5 –49.4 –53.4 –54.0 –63.1 –49.7 –54.4 –51.6

for testing RGB videos with BT.601. Table 1 and 2 show
the BD-rate comparisons in terms of PSNR and MS-SSIM,
respectively.

In this two tables, we use a newer version of VTM, i.e.,
VTM-17.0 as the anchor, when compared with the VTM-
13.2 used in [9]. At the same time, we use the 10 bit inter-
mediate representation for YUV444 rather than 8 bit used
in [9]. These two modifications brings a more powerful
baseline. As shown in Table 1, the VTM-13.2 used in [9]
has an average 5.0% bitrate increase than VTM-17.0 used
in this paper.

When using the stronger VTM-17.0 as anchor, we can
see that our DCVC-DC also achieves significant bitrate sav-
ing for RGB videos converted using BT.601. For example,
Table 1 shows that our DCVC-DC can achieve an average
of 18.0% bitrate saving over VTM-17.0. By contrast, other
NVCs still cannot surpass VTM-17.0. These results verify
the effectiveness of our DCVC-DC.

4. Rate-Distortion Curves
In this document, we show the rate-distortion (RD)

curves of all datasets, which correspond to the results in
the main paper. Fig. 8 and 9 show the RD curves for videos
in RGB colorspace with BT.709. Fig. 10 shows the RD
curves for videos in YUV420 colorspace without any con-
version. From these figures, we can see that our DCVC-DC
can achieve SOTA compression ratio in a wide bitrate range.

5. Visual Comparison
Here we also provide some visual comparisons to

demonstrate the advantage of our codec. Fig. 11 shows
four examples. From these examples, we can see that our
DCVC-DC can reconstruct clearer textures without increas-
ing the bitrate cost, when compared with VTM-17.0 and
ECM-5.0. In addition, it is also noted that, despite we learn
the hierarchical quality pattern, there is no visual flicker in
the decoded video. As shown in the PSNR curve in the main



Figure 8. RD curves of UVG, MCL-JCV, HEVC RGB and B. The comparison is in RGB colorspace with BT.709. The left column is with
PSNR and right column is with MS-SSIM.



Figure 9. RD curves of HEVC C, D, and E. The comparison is in RGB colorspace with BT.709. The left column is with PSNR and right
column is with MS-SSIM.

paper, we can see that our DCVC-DC actually has smaller
PSNR variance than VTM-17.0. The standard community
has verified the hierarchical quality pattern can improve the
compression ratio with negligible visual degradation.
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