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In this supplementary material, we elaborate on our ex-
perimental setup, method details, and training and inference
hyperparameters. Further, we provide additional ablation
studies, dataset statistics, and results of our tracker and of
our data hallucination strategy.

1. Dataset statistics

Since we focus on tracking an arbitrary vocabulary of
classes with our tracker, we use the only large-vocabulary
MOT benchmark publicly available, namely TAO [2] in all
our experiments. However, to show that our method also
works on other datasets, we provide a zero-shot generaliza-
tion experiment on BDD100K [10] in Sec. 4 of this appendix.
Furthermore, we show qualitative results on arbitrary internet
videos in Sec. 5.
TAO validation set. The 833 object classes in TAO have
an overlap of 482 classes in LVIS. In the validation set of
TAO, 295 of the overlapping classes are present. 35 of these
classes are defined as rare, which serve as our Cnovel. In
total, there are 109,963 annotations across 988 validation
sequences for evaluation, with 2,835 annotations in Cnovel.
TAO test set. To evaluate open-vocabulary MOT on the
TAO test set, we resort to the recently published BURST [1]
dataset that provides us with test set annotations for the
TAO videos. This is due to the fact that the TAO test set
annotations are not publicly available. However, we need the
test set annotations to split the evaluation into base and novel
classes. In particular, we use the instance mask annotations
in BURST to create 2D bounding boxes which serve as our
ground truth for evaluation on the TAO test set.

In the test set of TAO, there are 324 of the overlapping
classes mentioned above present. 33 of these classes are
defined as rare, which serve as our Cnovel. In total, there are
164,501 annotations across 1,419 test sequences for evalua-
tion, with 2,263 annotations in Cnovel.

*Equal contribution.

2. Experiment details
Training details. To train OVTrack we use a two-stage
training scheme. In particular, we first train the detector for
20 epochs on LVIS [6] using standard data augmentations
and without hallucinated images following [4]. We use pre-
trained backbone weights from [9] which are trained self-
supervised for 400 epochs on ImageNet [3]. For the first
stage of training, we use SGD optimizer with a learning rate
of 0.02, momentum of 0.9, weight decay of 0.0001, a batch
size of 16 and decay the learning rate by a factor of 10 at
epochs [8, 16]. In the second stage of training, we train the
tracking head for 6 epochs on LVIS [6] with our hallucinated
reference images. We use the same optimizer and learning
rate settings and decay the learning rate at epochs [3, 5].
Experiment details. For the comparison on open-
vocabulary MOT, all methods train using the same training
schedule and dataset versions. In particular, we use LVISv1
annotations to train our model and the baselines. The base-
lines, namely QDTrack [5] and TETer [7] are trained accord-
ing to the schedules mentioned in the respective papers, i.e.
24 epochs on LVIS and a subsequent fine-tuning of the track-
ing head on TAO for 12 epochs. We initialize the detection
modules following [4]. We train our method with a similar,
but shorter schedule as described above. For the closed-
set MOT comparisons, we take the same model as above
and compare with the numbers reported in the respective
papers. For our ablation studies, we use the same 6 epoch
fine-tuning as above. For data hallucination, we use the com-
bined LVISv1 and COCO annotations as used in [2, 5, 11].
Note that for data hallucination, we only add objects with a
bounding box area greater than 642 to A+.

3. Method details
We provide details of our network architecture, losses,

and inference scheme. For the tracking and image heads,
we use a standard 4-conv-1-fc architecture each. The text
embedding and bounding box regression, share a single head
with the 4-conv-1-fc architecture, with two parallel linear
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Algorithm 1 Inference pipeline of OVTrack for associating
objects across a video sequence.

Input: frame index t, object candidates r ∈ P , confidence
pr, detection embeddings qr, and track embeddings qτ

for all τ ∈ T .
1: DuplicateRemoval(P )
2: for r ∈ P, τ ∈ T # compute matching scores
3: f(r, τ) = similarity(qr,qτ )
4: end for
5: for r ∈ P # track management
6: c = max(f(r)) # match confidence
7: τmatch = argmax(f(r)) # matched track ID
8: if c > β and pi > βobj # object match found
9: updateTrack(τmatch, r,qr, t) # update track

10: else if pr > γ
11: createTrack(r, qr, t) # create new track
12: end if
13: end for

layers on top for text embedding and box regression outputs.
In terms of network losses, we attach the formula of Laux
described in the main paper in Sec. 4.1.

Laux =

(
q · q′

||q||||q′||
− e

)2

, (1)

where e = 1 if the two samples q,q′ ∈ Q have the same
identity and 0 otherwise. Note also that, to better align the
text embeddings tc with the task at hand, we use learned con-
text vectors following [4]. This is because CLIP is trained
with image-text pairs that usually contain only a single or a
few instances, unlike the potentially crowded scenes encoun-
tered in MOT.

In terms of inference, we provide the formula for the
bi-softmax matching that we use for association:

s(τ, r) = 1

2

[
exp(qr · qτ )∑

r′∈P exp(qr′ · qτ )
+

exp(qr · qτ )∑
τ ′∈T exp(qr · qτ ′)

]
.

(2)
Moreover, we employ a temporal voting scheme among
the frame-level object classification results to decide the fi-
nal video object category in a given test sequence. Due to
the different evaluation criteria of TETA and Track mAP,
we use slightly different detector post-processing for infer-
ence in our experiments. For Track mAP evaluation, we set
|P | = 300 and use class-specific non-maximum suppression
(NMS). For TETA evaluation, we set |P | = 50 and use class-
agnostic NMS. Overall, our inference scheme is illustrated
in Algorithm 1.
Data generation pipeline. As stated in Sec. 4.2 and 5.2
of the main paper, we apply data augmentations in combi-
nation with our data hallucination strategy to simulate all
perturbations commonly encountered in video data. We im-
plement this process stochastically so that the image Iref is

Table 1. Open-Vocabulary MOT Track mAP comparison. We
compare to existing trackers on TAO [2] validation and test sets.
All methods use ResNet50 as backbone. All methods use Faster
R-CNN [8]. Only our method does not use videos for training.

Method Base Classes Novel Classes

Validation set mAP50 mAP75 mAP mAP50 mAP75 mAP

QDTrack [5] 14.7 5.2 10.0 8.3 3.8 6.0
TETer [7] 14.1 5.1 9.6 8.5 3.9 6.2

OVTrack 21.0 10.1 15.6 23.0 14.5 18.8

Test set mAP50 mAP75 mAP mAP50 mAP75 mAP

QDTrack [5] 11.6 3.3 7.5 1.6 0.4 1.0
TETer [7] 11.3 3.1 7.2 1.7 0.6 1.2

OVTrack 17.9 7.7 12.9 13.2 3.0 8.2

Table 2. Data hallucination hyperparameters. We show that
using language prompts and geometric transformation of the input
image before denoising is essential to our data hallucination strategy
(‘DDPM’, paper Sec. 4.2). We use the TAO [2] validation set.

DDPM Lang. prompt Geo. trans. TETA LocA AssocA ClsA

- - - 32.5 48.9 31.1 17.6
✓ - - 32.6 49.0 30.6 17.2
✓ ✓ - 32.3 48.9 30.7 17.2
✓ - ✓ 32.8 48.9 32.4 17.1
✓ ✓ ✓ 33.3 48.9 32.9 18.0

generated from a random sample of transformations. The set
of transformations is composed of random resize, flip, affine
transformation, color jitter, mosaic, and data hallucination.

4. Ablation studies and additional results
Open-vocabulary MOT. We add an additional comparison
to closed-set trackers in the open-vocabulary setting using
the official TAO metrics in Tab. 1. We observe that also on
the official Track mAP metrics, our OVTrack outperforms
existing closed-set trackers by a wide margin.
Data hallucination strategy. In Fig. 1 we illustrate a va-
riety of hyperparameters of the data hallucination process.
We experiment with varying noise levels, number of itera-
tions, and homogenization steps and choose the parameter
configuration with the visually most appealing results.

In addition, we ablate the most important hyperparame-
ters of our data hallucination strategy quantitatively in Tab. 2.
We use standard data augmentations, i.e. random resize and
horizontal flip. We observe that using hallucinated images
without language prompt or geometric augmentations fails
to improve the performance of the baseline trained without
any hallucinated data. When adding the geometric augmen-
tations, however, we see a clear improvement of 1.3 points
in AssocA over the baseline. Further adding the language
prompt to condition the hallucination process improves the
result by another 0.5 points in AssocA, culminating in a 1.8
points improvement.
Zero-shot generalization. We test the ability of our



Table 3. Zero-shot generalization. We test our model along
with two closed set baselines, QDTrack [5] and TETer [7], on the
BDD100K [10] MOT validation split. We indicate the training data
used to train each model. † denotes logit masking of classes not
present in BDD100K.

Method Training TETA LocA AssocA ClsA

QDTrack† LVIS, TAO 35.6 38.1 28.5 40.2
TETer† LVIS, TAO 36.1 36.4 31.9 40.2
QDTrack LVIS, TAO 32.0 25.9 27.8 42.4
TETer LVIS, TAO 33.2 24.5 31.8 43.4
Ours LVIS 42.5 41.0 36.7 49.7

TETer BDD100K 58.7 47.2 52.9 76.0

tracker to adapt zero-shot to another dataset in comparison to
closed-set trackers. We use the large-scale MOT benchmark
BDD100K [10] for this experiment. Note that BDD100K
has an overlapping class taxonomy with TAO. We apply
our tracker conditioned on text prompts containing the class
names in the BDD100K dataset. Further, for the closed-set
baselines, we provide results where we masked out the logits
of classes not present in BDD100K.

Tab. 3 shows the results using the TETA metric. Our
tracker exhibits a much better transfer ability, outperforming
the closed-set baselines by at least 6.4 points in TETA. Our
OVTrack improves over the baselines in localization, associ-
ation and particularly in classification, where the gap is the
biggest with 6.3 points in ClsA. Overall, we show that we
are able to bridge the gap to the upper bound, i.e. a tracker
trained on the target dataset.

5. Qualitative results
For the qualitative results in this supplementary material,

we set γ = 1
|C|+1 where C is the number of prompts in the

video to have a more rigorous detection filtering.
Data hallucination strategy. We visualize the results of
different hyperparameters in our diffusion process in Fig. 1.
We choose the parameters with the visually most appealing
results, δ0 = 0.75, K = 50 and η = 0.01. We observe that
choosing a too high δ0 leads to divergence from the original
image content, while too little noise leads to insufficient
fidelity. Increasing the number of iterations K does not lead
to an obvious improvement in visual quality, so we choose
K = 50 to speed up the image generation process. Finally,
having no homogenization, i.e. setting η = 0.0 leads to
noticeable artifacts. On the other hand, a higher η of 0.1
leads to subtle, but significant appearance perturbation of the
object, which is also undesirable for preserving its identity.

In addition, we illustrate examples of our final data hallu-
cination strategy in Fig. 3. We visualize examples from the
LVIS dataset, where in each row we plot both annotations
and images and show the generated versions and the original
images.

Qualitative results and failure cases. We show qualitative
results and failure cases of our method in Fig. 2. We observe
that our method does well on tracking, and is able to gener-
alize even to very exotic classes, such as pikachu. However,
fine-grained classification is still challenging. In particular,
in the bottom row of the figure, our method fails to distin-
guish the sea gull from the puffin, wrongly classifying it as
another sea gull. Furthermore, our detection is not perfect,
as can be seen by the false negative in the 7th row (t + 4).
In addition, the 6th row exhibits an ID switch between t+ 3
and t+ 4.
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Figure 1. Data hallucination hyperparameters. We show the influence leaving out of language prompt and geometric transformation. In
addition, we examine different values for the noise level δ0, the number of denoising steps K and the homogenization threshold η. We
indicate the value we choose for each of those parameters in bold.
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Figure 2. OVTrack qualitative results and failure cases. We condition our tracker on text prompts unseen during training and successfully
track the corresponding objects in the videos. The box color depicts object identity. We choose random internet videos to test our algorithm
on diverse real-world scenarios. The bottom row shows the difficulty of fine-grained classification, where our method fails to distinguish the
puffin from the sea gull. Best viewed digitally.
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Figure 3. Data hallucination examples. We provide examples of our data hallucination strategy including annotations on the LVIS dataset.
We plot the generated versions and the original for comparison. The ids on the bounding boxes depict the identity.
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