
Supplementary Material of
Open-set Semantic Segmentation for Point Clouds

via Adversarial Prototype Framework

We expand on the techniques of the adversarial prototype
framework (APF) in the supplementary material, including
the training algorithm, architectures of the networks in the
feature adversarial module (FAM), details of the unseen class
selection, and additional experimental results.

1. Training algorithm
As stated in the submitted text, we firstly train the fea-

ture extraction module (FEM) with prototypical constraint
module (PCM) to acquire coarse point features, as shown in
Algorithm 1.

Then we fix the feature extractor in FEM for the training
stability of GAN and train the FAM and PCM in a joint
scheme, as shown in Algorithm 2.

Algorithm 1: Train FEM and PCM jointly.
Input: Original point clouds X.
Output: Extracted features F and prototypes P.

1 Randomly initialize the parametric prototype set P;
2 t1 ← 0;
3 while t1 < e1 do
4 Utilize the feature extractor F to extract point

features F = F(X);
5 Compute the prototypical constraint Lt1

PCM ;
6 Update the parametric prototypes by

Pt1+1 = Pt1 − µt1 ·
∂Lt1

PCM

∂Pt1
;

7 Update the parameters in the feature extractor by

θt1+1
F = θt1F − µt1 ·

∂Lt1
PCM

∂θt1F
;

8 t1 ← t1 + 1;
9 end

10 Output the extracted features F = F(X) and learned
prototypes P.

2. Architecture of the networks in FAM

The feature adversarial module consists of three parts: a
generator, a discriminator, and an adversarial mapper. The
generative adversarial networks are employed to synthesize
unseen-class features. The adversarial mapper is designed

Algorithm 2: Train PCM and FAM jointly.
Input: Original point clouds X and gaussian noises

n = {ni}Nc
i=1.

Output: Refined features F̂ and prototypes P.
1 Randomly initialize the parametric prototype set P;
2 t2 ← 0;
3 Load the pretrained feature extractor F and freeze its

parameters θF ;
4 Extract point features F = F(X) = {fi}Nc

i=1;
5 while t2 < e2 do
6 Update the discriminator parameters θD by

ascending the stochastic gradient:

∇θD
1
Nc

Nc∑
i=1

[
logD(fi) + log(1−D(G(ni)))

]
;

7 Update the generator parameters θG by ascending
the stochastic gradient:

∇θG

[
1
Nc

Nc∑
i=1

log(D(G(ni)))
]
+ λadv ·Adv(fs,P);

8 Update the adversarial mapper parameters θM by
descending the stochastic gradient:

∇θM

[ 1

Nc

Nc∑
i=1

LPCM

]
− λadv ·Adv(fs,P);

9 t2 ← t2 + 1;
10 end
11 Output the refined features F̂ = M(F) and learned

prototypes P.



Method ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [8] 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
TangentConv [9] 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8
PointWeb [12] 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
MinkowskiNet [6] 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv [10] 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
Point Transformer [13] 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

Table 1. Segmentation results on S3DIS dataset by 6 methods.

to map the features into a novel feature space for further
refinement. And the architectures of these three networks are
shown in Fig. 1 and described below :

• The generator has a three-layer perceptron architecture.
It contains three fully-connected layers and uses ReLU
(Rectified Linear Unit) as the non-linear activation func-
tion.

• The discriminator also has a three-layer perceptron ar-
chitecture which is same with the generator, except that
the last activation function is replaced with Sigmoid for
outputting the probability.

• The adversarial mapper contains two fully-connected
layers and two auxiliary batch normalization (ABN)
layers [5], with ReLU being the non-linear activation
function.

3. Details of the unseen class selection
We follow the setting of the existing work [4] to choose

{other-vehicle} as the unseen class on the SemanticKITTI
dataset [2]. And considering that we are the first attempt to
conduct open-set 3D semantic segmentation on the indoor
S3DIS dataset [1], we select unseen classes according to the
following principle:

• The segmentation accuracy of the unseen-class object
should be appropriate. Theoretically, the segmentation
performance of the backbone model could be regarded
as the upper bound for the comparative closed-set eval-
uation. For instance, as seen from Table 1, most of
the methods only achieve 0% IoU (Intersection over
Union) on the {beam}. Thus, it is meaningless to
choose {beam} as the unseen class, because the model

could not effectively segment the points of {beam}
whether their corresponding labels are provided or not.

In accordance to the principle mentioned above and the
segmentation results in Table 1, we choose {window, sofa}
as the unseen classes on the S3DIS dataset. We also conduct
several ablation studies in the submitted text with other ap-
propriate classes chosen as the unseen classes.

4. Additional experimental results
Effect of prototype initialization strategy. We randomly

initialize the prototype set in the training procedure, as seen
in Algorithm 1 and Algorithm 2. To investigate the effect
of prototype initialization strategy, we conduct a contrast
experiment by initializing the prototype set with all elements
being zero. The experimental results are reported in Table 2.
As seen from this table, different prototype initialization
strategies (random or fixed) do not affect the performance
of the model evidently, mainly because the parametric pro-
totypes are learned under the prototypical constraint which
takes all dimensions into consideration so that the prototypes
could learn sufficiently discriminative information regardless
of the initial values.

Effect of backbone. To verify the flexibility of our pro-
posed framework, we change a different backbone to extract
features. Same with the ablation studies of the effect of
unseen classes in the main paper, we only compare the per-
formance of the closed-set backbone, REAL [4] and APF

Initialization strategy AUROC AUPR mIoUc

Random initialization 90.3 30.9 69.0
Fixed initialization 90.0 31.6 69.3

Table 2. Ablation studies of prototype initialization strategy.

MLP ReLU MLP ReLU MLP ReLU

32→512 512→1024 1024→32

(a) Architecture of the generator.

MLP ReLU MLP ReLU MLP Sigmoid

32→512 512→1024 1024→1

(b) Architecture of the discriminator.

MLP ReLUABN MLP ReLUABN

32→64 64→32

(c) Architecture of the adversarial mapper.

Figure 1. Architecture of the networks in FAM.



AUROC AUPR mIoUc

Closed-set ST - - 69.7

ST + REAL [4] 86.7 28.1 69.5
ST + APF 89.8 31.3 69.2

Table 3. Ablation studies of backbone. ST denotes Stratified Trans-
former [7] for brevity. The best results are in bold in each metric.

here. The results are reported in Table 3, which indicate that
APF is applicable to an arbitrary backbone and still achieves
the best performance in AUROC and AUPR with a slight
sacrifice in mIoUc.

Visualization of the refined features. We use t-SNE [11]
to reduce the dimension of the refined features from S3DIS
dataset and the visualization result is shown in Fig. 2. As
seen from this figure, the real unseen-class features (circles
colorized in dark blue) and synthetic unseen-class features
(circles colorized in light blue) are located in the center of
the feature space. This is consistent with the revealed finding
stated in [3] that the unseen-class samples usually aggregate
in the center of the feature space.

Figure 2. Visualization of the refined features. Class 0 represents
the unseen-class samples, class 1 represents the synthetic samples,
and class 2-12 represent the seen-class samples.
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