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Figure 1. Artistic imagery created with various 3D scenes generated by our method (background sky post-added). The original exemplar
scenes for generating these results are: (from left to right and top to bottom): The Vast Land [35], Heal Mountain [17], Devil’s Tower ©2022
Google, Callanish [24], Meteora ©2022 Google. Green Island [18],
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A. More Visual Results

More artistic pieces, that are created with high-quality
and diverse general natural scenes generated by our method,
are shown in Figure 1. Moreover, in Figure 2, we also vi-
sualize the underlying high-quality and diverse geometry of
more generated samples. Figure 15, 16 presents more sam-
ples generated with our method.

In addition to more dynamic 3D viewing of a large col-
lection of generated samples presented in the supplemen-
tary video, please also see the anonymous project website
http://wyysf-98.github.io/Sin3DGen for a more immersive
view into our 3D results.

B. Implementation Details

All synthesis results presented in this paper share the fol-
lowing default setting, unless specified. We will release

the code for reproducing the results presented in this paper,

upon the publication of this work.

Random Generation. By default, the synthesized scene
S shares the same bounding box B with E in the random
synthesis task. Each scene is located inside a cuboid, of
which the aspect ratio varies according to different exem-
plars. In Table 1, we list the final resolution of SN in the
pyramidal generation framework for each exemplar scene.
At the N -th scale in the multi-scale framework, the reso-
lution along the maximum dimension of SN is set to 121,
considering the trade-off between the quality and compu-
tational efficiency of the generation. The resolution along
the maximum dimension of the higher-resolution Ehigh is
512. The scaling factor between consecutive scales in the
pyramid is r = 4/3, and the coarsest resolution is 16. We
use N = 7 in the pyramid, which results in 8 scales in to-
tal. The patch size at all scales is set to p = 5. We set
the number of PCA components to 3, the truncate scale of
SDF t = 3 ⇥ w, where w is the voxel size. The weight
of the appearance feature is wa = 0.5, the completeness
trade-off weight ↵ = 0.01, and the initial noise � = 0.5.
At coarser scales (n < 5), exact NNF is applied Te = 10
times, which means the value-based NNF is performed with
Te�1 = 9 times and followed by one mapping-based NNF
search; At the finest scale (n >= 5), approximate NNF via
PatchMatch is performed Ta = 2 times. The “jump flood”
radius is 8, and the random search radius is fit to the max
resolution of the current exemplar.

Applications. In contrast to the random synthesis task,
the � for noise used in all applications is set to 0. More
specifically:

• 1) Retargeting: The goal is to resize a 3D scene to a
target size (typically of a different aspect ratio), while

maintaining the local patches in the exemplar. We sim-
ply set the resolution of SN to the target size, and the
resolution of S0, ..., SN�1 is adapted accordingly with
the default scaling factor r.

• 2) Editing: Users can manipulate on a 3D proxy,
which can be the underlining mapping field or mesh,
for editing an exemplar or generated scene, such as re-
moval, duplication, and modification. The manually
manipulated proxy is then converted and fed as the ini-
tial guess at the coarsest scale for synthesizing the final
scene. As editing the 3D scene requires more meticu-
lous 3D interaction, we set the resolution at the coars-
est scale to a higher value (resolution along the max
dimension is 28), and use 6 scales in total. We perform
the exact NNF at the first 3 scales, followed by 3 finer
scales with the approximate NNF.

• 3) Structural analogies: Given two scenes A and B,
we create a scene with the patch distribution of A, but
which is structurally aligned with B. This is realized
by using the exemplar pyramid of A, and an identity
mapping as the initial guess, but replacing Ê0(S̃0) with
the transformed features in B, and vice versa. As the
content of the generated scene at the coarsest scale
is already specified by Ê0(S̃0), the pyramidal gener-
ation starts with a higher-resolution scale (51 voxels
along the max dimension), finishes the generation with
4 scales in total, and performs exact NNF in the first
scale.

• 4) Re-decoration: Trivially, we do not need to re-
synthesize the scene in the re-decoration application.
Given an already generated scene, a novel scene can
be obtained by simply remapping the coordinate-based
synthesis result to an exemplar of different appearance.

C. Datasets

We collected a rich variety of 3D scene models to exam-
ine the performance of our method on random scene gener-
ation, ranging from rocks to plants, sculptures, landscapes,
terrains, artistic scenes, etc. For each 3D scene model,
we render 200 images at the resolution 1024 × 1024, with
cameras distributed on a sphere in Blender [10]. Then the
Plenoxels-based exemplar pyramid is obtained via coarse-
to-fine training on these images. Notably, in Figure 11,
we also demonstrate our method on real-images collected
from a real-world scenic site. To this end, we collect 300
images with the resolution 1280 x 720 from Google Earth
Studio [1], where we can manually specify cameras for
simulating a drone programmed to fly over a scenic spot,
for training the Plenoxels-based exemplar. Specifically, we
move the camera in a spiral motion and gradually elevate
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Figure 2. Visualization of the high-quality geometries generated by our methods. The original exemplar scenes for generating these results
are: (from top to bottom) Cactus Cereus [25], Stone Sculpture [3], St Alphage [6], Spinsters Rock [4], The Vast Land [35], Volcano Island
Lowpoly [5].

the camera from a high altitude to a low altitude. Then, we
use COLMAP [31, 32] to estimate the camera parameters.
More details can be found in the video. Figure 13 presents
the visuals of all exemplars used in this paper.

D. More Analysis

In general, our method is robust to varying hyper-
parameters to some extent. We shall show the effects of
using different parameters in the following.

Effects of Different Noise z0. In Figure 3, we show the
results obtained by different initial guesses, i.e., the identity
mapping shuffled with different noises, at the coarsest level.

Effects of Different wa. Empirically, the trade-off param-
eter wa for balancing the appearance and geometry feature
is set to 0.5 by default. While we have shown this set-
ting yields robust and high-quality generation, we shall also
demonstrate the effects of varying weights. Generally, in
Figure 4, we can see that our method is robust to varying wa



Table 1. Resolution configuration for figures in the main paper.

Figure Data Resolution of SN

Fig. 1 Cactus Cereus [25] 92⇥ 108⇥ 121

Fig. 2 &
Fig. 5 Green Island [18] 121⇥ 121⇥ 47

Fig. 3 &
Fig. 5 St Alphage [6] 121⇥ 121⇥ 92

Fig. 5

Calda House [7] 121⇥ 121⇥ 71
Callanish [24] 121⇥ 121⇥ 47
Stone Arch [36] 121⇥ 51⇥ 71
Desert Lowpoly [12] 121⇥ 121⇥ 92
Meteora ©2022 Google 121⇥ 121⇥ 47
Spinsters Rock [4] 121⇥ 121⇥ 84
Stone Sculpture [3] 108⇥ 84⇥ 121
Volcano Island Lowpoly [5] 121⇥ 121⇥ 71
The Vast Land [35] 121⇥ 121⇥ 47

Fig. 7 Mountain with Lakes [40] 121⇥ 121⇥ 72

Fig. 10 Autumn Camping [21] 121⇥ 99⇥ 72
Winter Camping [23] 121⇥ 99⇥ 72

Fig. 5 &
Fig. 10

Devil’s Tower ©2022 Google 121⇥ 121⇥ 63
Cactus Saguaro [13] 71⇥ 72⇥ 121
Camping Lowpoly [22] 121⇥ 99⇥ 72
Mountain [29] 121⇥ 121⇥ 84
Stylized Cactus [30] 121⇥ 121⇥ 121

Table 2. Resolution configuration for high-resolution synthesis

and the retargeting application in the main paper.

Figure Exemplar Resolution of SN

Fig. 6 The Vast Land [35] 288⇥ 288⇥ 112

Fig. 10

Cactus Cereus [25] 92⇥ 108⇥ 152
Stone Arch [36] 242⇥ 51⇥ 71
Tiny Castle [9] 121⇥ 63⇥ 237
Train Wagon [2] 47⇥ 182⇥ 47

! = 0.5 ! = 0.75 ! = 1.0

! = 0 ! = 0.1 ! = 0.25

Figure 3. Effects of different initial noise. Intuitively, noise with
smaller � values leads to more similar scenes to the exemplar,
while larger values result in more diverse ones.

to some extent. However, setting wa to an extremely small
value, which pays much attention to the geometry feature,
will lead to inconsistent appearance and artifacts. On the

!! = 0.0 !! = 0.25 !! = 0.5 !! = 0.75 !! = 1.0

Figure 4. Effects of varying wa. While wa around 0.5 produces
relatively stable results, extreme values introduce visual inconsis-
tency and artifacts (see left wa), or even fail (see right wa = 1.0).

! = 0.005 ! = 0.05 ! = 1.0! = 0.5

Figure 5. Effects of varying ↵. ↵ serves as a coarse control knob
for visual completeness. The river becomes shorter, suggesting
lower visual completeness, as ↵ increases.

!"#$(&!) = 16 !"#$(&!) = 21 !"#$(&!) = 28!"#$(&!) = 12

Figure 6. Effects of different resolutions of S0. Lower-resolution
S0 (larger receptive field at coarse scale) results in less structural
diversity, producing almost identical to the exemplar. On the con-
trary, with smaller receptive fields at the coarsest scale, the global
arrangement can not be well preserved (see messy structures on
the right).

other end, if we put all emphasis on the geometry feature,
the synthesis fails and produces empty scenes.

Effects of Different ↵. Figure 5 presents the effects of
varying ↵ for different levels of visual completeness. Nev-
ertheless, we also found the degrees of such control may
not be always perfectly explicit, which we also observed
with [14].

Effects of Different Resolution for S0 at the Coarsest

Scale. Given a fixed patch size, which is p = 5 in our
work, a larger resolution at the coarsest scale suggests a
smaller effective receptive field (the same concept as in con-
volutional neural networks) and less-considered global lay-
outs at the coarser scales, and vice versa. In our work, we
by default use the setting where the patch at the coarsest
scale captures 1/3 of the content in the exemplar, balancing
the local diversity and global layout. In Figure 6, we also
show the impact of varying resolutions at the coarsest scale,
that capture contents of different sizes in the generation.
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!"#$(&!) = 162 !"#$(&!) = 216 !"#$(&!) = 288!"#$(&!) = 121

Figure 7. Effects of different resolutions of SN . The overall visual
synthesis is stable at a resolution of 121. Some minor aliasing can
be found in lower resolution (left), with a larger scale for synthesis,
more details can be obtained.

! = 4/3 ! = 5/3 ! = 6/3 ! = 8/3

Figure 8. Effects of different downscale ratios r. As r increasing,
fine structures, e.g., the arch doors, gradually disappears, produc-
ing bulky structures and less diversity in each instance.

Effects of Different Resolution of SN at the Finest Scale.

The synthesis at finer scales only considers visual coherence
and adds local details. We have shown that synthesizing
with a maximum resolution 121 by default in the pyramid is
sufficient in most cases for the trade-off between quality and
efficiency. Moreover, in Figure 7, we show that using higher
resolutions for SN only leads to negligible visual gains. Be-
sides, we also observed that as we use approximate NNF at
finer scales, the inaccurate NNF search may introduce some
wrong patches and lead to performance degradation in the
generation.

Effects of Different Downscale Ratio r. The downscale
ratio r used for building the pyramid affects the transition
between scales. As the ratio increases, the transition of the
generation between scales becomes more inconsistent and
unstable due to large gaps between consecutive scales, lead-
ing to the loss of fine structures and less diversity as shown
in Figure 8.

Effects of the Truncated Scale t. The truncated scale t
controls the range of geometric features we keep for patch-
ing matching. Smaller truncate scales only consider infor-
mation near to surface and degrade to the occupancy field,
which may produce many tiny pieces and incomplete in-
stances, while larger values lead to blurry results. Figure 9
presents the visual results.

Only Exact or Approximate NNF-3D. The mix use of
exact NNF and approximate NNF in our framework has
shown the efficacy and efficiency in 3D generation. Using
only exact NNF would quickly lead to prohibitive computa-

! = 1 × % ! = 2 × % ! = 4 × % ! = 8 × %

Figure 9. Effects of different truncate scales t, where w is the
current voxel size at each scale. A small t will lead to separated
fragments due to the loss of geometry information. On the con-
trary, a very larger truncate scale will blur the geometric feature
and only synthesize instances with a coarse shape.

Exact-to-approximate NNF (ours) Only Approximate-NNF

Figure 10. Approximate NNF-only generation. See the distorted
arches occurred in the results on the right.

tional cost and prevent us from synthesizing high-resolution
results. See Table 3 for the detailed computation overhead.
On the other end, only using approximate NNF all the time
will harm the generation, producing distorted results, as the
approximate NNF is inaccurate. In Figure 9, we show the
visual results when only using approximate NNF-3D.

E. More Experiments

Working with Unbounded Scenes. Benefiting from us-
ing Plenoxels, which trains on 2D images, for represent-
ing the input scene, our method can also work on images
collected from a real-world unbounded scene. To this end,
we use COLMAP [31, 32] to estimate the camera param-
eters, and model the background using an implicit neural
network, similar to NeRF++ [39]. Figure 11 presents the
results, more visual details can be found in the video. Note
that, existing NeRF-based models often struggle in handling
”unbounded” real-world scenes, and disentangling the fore-
ground and background. Nevertheless, some works [8, 20]
attempt to tackle these problems, showing promising re-
sults. We believe these methods can help boost the per-
formance of our method on more real-world scenes, which,
however, is not in the scope of this work and stimulates fu-
ture research.

Computational Overhead. In Table 3, we reported the
detailed time and memory usage for the exact-only NNF
and approximate-only NNF. As aforementioned, using ei-
ther exact-only or approximate-only NNF would not be sat-
isfying, and our exact-to-approximate scheme is the key to
enable synthesizing high-quality results with limited com-
putational resources.



Exemplar Generated Scene 1 Generated Scene 2

Figure 11. Samples generated with images collected from a real-
world scenic site – Bryce canyon ©2022 Google. Notably, we
only synthesize the region of interest (i.e., the odd rocks) and the
background is disentangled out by modeling with an independent
implicit neural network.

Table 3. Computational overhead. We report the time and
memory consumption in each NNF iteration for exact-only and
approximate-only NNF.

Resolution Only Exact NNF Only Approximate NNF

Time (s) Memory (GB) Time (s) Memory (GB)

16⇥ 16⇥ 5 0.01 0.07 0.55 0.07
21⇥ 21⇥ 7 0.01 0.12 0.59 0.14
28⇥ 28⇥ 10 0.02 0.68 0.69 0.21
38⇥ 38⇥ 14 0.08 1.48 0.98 0.43
51⇥ 51⇥ 19 0.57 3.66 1.69 0.92
68⇥ 68⇥ 26 4.06 9.74 3.62 2.02
91⇥ 91⇥ 35 27.47 25.17 8.47 4.77
121⇥ 121⇥ 47 N/A N/A 20.07 11.28
162⇥ 162⇥ 63 N/A N/A 48.91 17.05
216⇥ 216⇥ 84 N/A N/A 116.09 21.95
288⇥ 288⇥ 112 N/A N/A 278.53 23.27
384⇥ 384⇥ 150 N/A N/A 662.23 26.60

Failure Cases. As mentioned in the paper, our method fa-
vors scenes with complex structures and textures for match-
ing the internal distribution, lacking sufficient diverse patch
candidates will lead to mode collapse issues. Besides, with
voxelized volumetric representations, our method can not
perfectly synthesize scenes with tiny thin structures. More-
over, our method operates on the patch level, so we can not
guarantee that highly semantic or structural features in the
exemplar can be preserved intactly in the synthesized re-
sults. Figure 12 shows some failure cases when working
with our method.

F. Evaluation

F.1. Baselines

GRAF [33] We use the official implementation, and re-
place the camera poses with ones in our work. We follow
the default setting for training, one model for each exem-
plar scene is trained with renderings of resolution 5122 for
7200k samples, which takes about 3 days in a single V100
GPU. The final visuals are rendered at the resolution 5122.

StyleNeRF [15] We use the official release of StyleNeRF.
Same as GRAF, we replace the camera extrinsic and intrin-

Exemplar Generated SceneExemplar Generated Scene

Figure 12. Failure cases. An exemplar scene, that does not have
sufficient diverse patch candidates, would result in identical gener-
ation results to the input (See top left sculpture [27]). Our method
failed on scenes with tiny thin structures, such as branches [16]
and trees [26]. Scenes with highly semantic or structural informa-
tion can not be correctly handled (See broken fishes on the bottom
right [11, 28]).

sic parameters with the real distribution and set the back-
ground to white. All models are trained in the resolution of
5122 following the default setting by going through 6000k
images for about 3 days using 4 V100 GPUs.

GPNN-3D We naively extend the GPNN [14] for work-
ing on Plenoxels-based exemplar scenes. The density value
and SH values are normalized to fit [�1, 1], and we follow
all parameters as described in the original paper. The max-
imum resolution reached by GPNN-3D is only 38 due to
computational efficiency issues.

F.2. Camera Pose Sampling

To quantitatively evaluate the synthesized scenes from
2D projections, we uniformly sample K = 50 camera poses
on the upper hemisphere with radius R = 2.5, and use ele-
vation angles range from 0� to 90�. The focal length of the
camera is set to 512 times the pixel size, equivalently FoV
⇡ 39.6�, for all exemplar scenes.

F.3. Metrics

For each method, we produce 50 generated scenes on
each of the evaluated exemplars, render 50 multi-view im-
ages and extract the 3D geometric surface points of the ex-
emplar and each in the generated, and then rate the perfor-
mance using a combination of several common metrics in
both 2D and 3D generation:

Visual Quality measures how well the model captures
the internal statistics of the input exemplar from the 2D
perspective, by simply computing the averaged SIFID [34]
over multiple views of a generated scene. Concretely, for
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each image rendered from a generated scene, we compute
the single image SIFID of this image against the image
rendered at the associate viewpoint in the exemplar scene.
Then the SIFID-MV for a generated scene is the average
over the multiple views. We finally report the mean SIFID-
MV averaged over multiple generated scenes.

Visual Diversity of the set of generated scenes is mea-
sured via extending the image diversity score as in [34] to
multi-view images of a scene. First, under each view, we
calculated the standard deviation (std) of the intensity val-
ues of each pixel over 50 images rendered from 50 gener-
ated scenes, averaged it over all pixels, and normalized by
the std of the intensity values of the image rendered from
the exemplar. Then, we report the average of std values
obtained at 50 views as the Visual Diversity of a set of gen-
erated scenes.

Geometry Quality of a generated scene is measured as
the Minimal Matching Distance [37] (multiplied by 102)
between the set of generated patches and exemplar patches
(represented as point clouds sampled on the surface). As
mentioned in the paper, Plenoxels often produce invisible
noise, so we only pick point cloud patches on the sur-
face. Specifically, for a scene represented by a discrete
volume of resolution 2563, we extract mesh using March-
ing Cubes [19], and evenly sample 102400 points from the
mesh surface. To extract patches, we randomly pick 1000
points center, then combined them with the nearest 1024
points via k-NN search. Then the geometry quality of a
generated scene is calculated as the MMD between the set
of patches in a generated scene and the set of patches in
the exemplar scene. We then report the averaged geometry
quality score over 50 generated scenes.

Geometry Diversity of generated scenes is measured by
summing up all the differences among the 50 generated
scenes, i.e., Total Mutual Difference as in [37]. Specifi-
cally, we evenly sample 10240 points on the surface of each
generated mesh to obtain a point cloud, forming a set of 50
scene point clouds. Empty scenes are deprecated to calcu-
late the geometry diversity. Then the Geometry Diversity of
50 generated scenes is reported as the TMD calculated on
this set of point clouds.
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Figure 13. Visualization of the exemplars used in the main paper. More scenes can be found in the project page and video.



Figure 14. Diverse ”A Thousand Li of Rivers and Mountains” [38] generated from The Vast Land [35] by our method. Specification: EN

- 288 ⇥ 288 ⇥ 112, Ehigh - 512 ⇥ 512 ⇥ 200, SN - 747 ⇥ 288 ⇥ 112, Ehigh(SN ) - 1328 ⇥ 512 ⇥ 200, final rendering resolution -
4096⇥ 1024.



Figure 15. Diverse samples generated by our method. The input is shown in the green box on the left, followed by 7 generated novel
scenes.



Figure 16. Diverse samples generated by our method. The input is shown in the green box on the lef, followed by 7 generated novel scenes.
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