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Figure 1. Visual comparison of polarization information,
intensity(S0), DoLP(ρ), AoP(ϕ) extracted from original linear,
nonlinearized, or poorly quantized data.

1. Polarization information
Given a raw polarization image, pixels under polarizers

of four angles, i.e., 90◦ , 45◦, 0◦, and 135◦ are divided into
four channels, termed as I90◦ , I45◦ , I0◦ , and I130◦ . Using
the intensities, Stoke parameters can be calculated as fol-
lows for describing the linear polarization state of incident
light:

S0 =
1

2
(I0◦ + I45◦ + I90◦ + I135◦),

S1 = I0◦ − I90◦ ,

S2 = I45◦ − I135◦ .

(1)

It should be noticed that Stoke parameters build an in-
terconnection among the individual polarization pixel val-
ues. Three components are mostly used for polarization
information measurements, including the intensity of light
(described by S0), the Degree of Linear Polarization (the
proportion of fully linearly polarized light in a beam, DoLP,
ρ), and the Angle of Linear Polarization (the direction of

polarization plane, AoLP, ϕ). ρ and ϕ are calculated as:

ρ =

√
S2
1 + S2

2

S0
, ϕ =

1

2
arctan

S2

S1
. (2)

These information are essential for material property anal-
ysis and surface normal computations. Therefore, many
downstream polarization-based computer vision algorithms
directly take the measurements as their model inputs [4–6].
It is clear that the equations 1 and 2 only hold for unpro-
cessed raw images or those processed by linear amplifica-
tions, e.g., digital gain and white balance. Non-linear com-
putations in ISP, e.g., gamma correction and tone mapping,
will destroy the implicit constraints. Moreover, the quan-
tization process of converting 12-bit data to 8-bit values of
bright images will introduce quantization noises and reduce
accuracy, too [9]. As shown in Figure 1, we exhibit the
rendered sRGB images and extracted polarization informa-
tion of the original raw data and processed data. Among the
results, although quantization processing generates almost
the same intensities, the diminished precision causes com-
pletely wrong ρ and ϕ. We apply gamma correction for data
nonlinearization operation. The intensity seems more pleas-
ant to human vision, but the distribution of ρ is noticeably
changed. The results show the negative effects of non-linear
ISP and quantization on polarization information measure-
ments. This is why we focus on raw-domain processing in
this work.

2. Noise model calibration
Here, we provide more noise model calibration results

of the IMX250MYR sensor. As shown in Fig. 2, the dis-
tribution of parameters µ, σb and στ of each channel at
Gain = 24 varies greatly according to the color and polar-
ization patterns. Fig. 3 illustrates partial results of the linear
regression of

(
log K̂, logΣµ

)
and

(
log K̂, logΣb

)
. As

the covariance of 16 channels is computed, the total regres-
sion leads to a 16 × 16-dimensional linear model. Tenden-
cies of covariances between positively correlated channels
satisfy the linear regression model well and covariances be-
tween less correlated channels are extremely small that they
can be ignored.

1



mu

𝑅90 𝐺1
90 𝐵90 𝐺2

90 𝑅45 𝐺1
45 𝐵45 𝐺2

45 𝑅0 𝐺1
0 𝐵0 𝐺2

0 𝑅135 𝐺1
135 𝐵135 𝐺2

135

(a) µ

Sigma_r

𝑅90 𝐺1
90 𝐵90 𝐺2

90 𝑅45 𝐺1
45 𝐵45 𝐺2

45 𝑅0 𝐺1
0 𝐵0 𝐺2

0 𝑅135 𝐺1
135 𝐵135 𝐺2

135

(b) σb

Sigma tl

𝑅90 𝐺1
90 𝐵90 𝐺2

90 𝑅45 𝐺1
45 𝐵45 𝐺2

45 𝑅0 𝐺1
0 𝐵0 𝐺2

0 𝑅135 𝐺1
135 𝐵135 𝐺2

135

(c) στ

Figure 2. Box plots of µ, σb and στ of each channel at Gain =
24. The red dashed lines are the samples’ averages, and the orange
lines and green dashed lines in boxes represent the median and
mean values of samples of each channel.

3. Dataset capture

Camera gain and overall system gain. Camera gain is a
controllable parameter for the polarization color camera ac-
cessed from its interface. It is different from overall system
gain, but can be converted through:

G(K) = 20 log
K

K0
,

K(G) = K010
G/20.,

(3)

where G and K denote camera gain and corresponding
overall system gain, respectively. K0 is the overall system
gain when G = 0. From the equations, it is easy to know
that, K is doubled when adding 6 to G, e.g., 20 log 2 ≈ 6.
Therefore, Gs selected in our work are [0, 6, 12, 18, 24]
and similar to ISO settings of [100, 200, 400, 800, 1600].
G0 = 0 is used for reference images and others are applied
for noisy images. Then, our detailed data capture protocol
is summarized as follows: Two low light factors, 10 and 60
are selected for capturing low light images.

1 Require: G0 = 0;K(G)t∗ = K0t
2 for each scene do
3 Find a proper shutter speed t that well exposes

the scene at camera gain G0;
4 Take 100 images at exposure setting (G0, t) to

generate a reference image;
5 for each camera gain G do
6 t∗ = K0

K(G) t = t/10
G
20 ;

7 for each low light factor f do
8 Capture 5 noisy image at (G, t∗/f);
9 Select a noisy image whose intensity is

most close to the reference after
rescaled by ×f ;

10 end
11 end
12 end

Algorithm 1: Image capture protocol

4. Transformer model

We introduce detailed architecture of proposed Trans-
former model.

Overall architecture. As shown in Figure 4a, our Trans-
former model firstly extracts low-level feature embeddings
with a 3× 3 convolution layer. After that, 3 encoder stages,
a bottleneck stage and 3 decoder stages, with successive
Transformer blocks in each stage, are applied to handle
multi-scale features. After each encoder stage and before
each decoder stage, downsample layers and upsample lay-
ers, following the implementation of [8], are employed to
reduce or recover feature resolutions. Low-level encoder
features are delivered to the corresponding decoder stages,
where the features of the former decoder are concatenated.
Except for the last decoder stage, the channel of concate-
nated features are halved by a linear projection layer. At
last, a 3 × 3 convolution layer is applied to output a resid-
ual to noisy input and generate a denoised image. After the
last encoder stage, the feature are converted back into 2D
feature maps. Then we establish a skip connection between
the shallow and the deep features.
Transformer block. Different from conventional image de-
noising, polarized color image denoising aims to restore
clean signals from noisy inputs while preserving precise
polarization information at the same time. To meet the
needs, we propose the Transformer block build by stack-
ing (Shifted) Window Multi-heads Attention ((S)W-MA),
Window Multi-Shuffled-heads Transposed Attention (W-
MT(S)A), and a Locally-Enhanced MLP, as shown in the
Figure 4b. While SW-MA is applied to capture spatial at-
tention towards a better denoising performance, SW-MTSA
is expected to model interconnections of the channels and
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Figure 3. The linear regression results for the joint distribution of (a)
(
log K̂, logΣµ(R

90, ∗)
)

and (b)
(
log K̂, logΣb(R

90, ∗)
)

at

Gain = 24, where Σ(a, b) represents the covariance of a and b samples, ∗ denotes arbitrary channels. The labels indicate the channels,
e.g., R90. The results indicate lifted parameter covariances logΣ (y-axis) between positively correlated channels satisfy the linear function
to log K̂ (x-axis) well.

explore the polarization priors that existed implicity in
channle dimension. A LayerNorm (LN) layer is employed
before each module (omitted in Figure 4) and a residual
connection is applied after each module.

Shifted Window-based Multi-head Attention. Conven-
tional attention modules have shown great capabilities in
modeling spatial long-term dependencies for image restora-
tion tasks [2, 12]. However, the time and memory com-
plexity of the key-query dot-product are quadratic to the
spatial resolution of input, so the global attention mod-
ule is unavailable for our high-resolution data. Compared
with global attention, SW-MA has shown a better speed-
accuracy trade-off [1] with local attention and shifted win-
dow strategy. Applying the learnable relative position en-
coding B [1], the attention calculation can be formulated
as:
Attention(Q,K,V) = SoftMax(QKT/α+B)V, (4)

where Q,K,V ∈ Rl2×d are the query, key, and value ma-
trices encoded with the same input; α is a learnable temper-
ature parameter for adjus SoftMax activation; l2 denotes the
window size and d represents the number of channels. As
the stages get deeper, the SW-MA can capture longer spa-
tial dependencies. Regular and shifted window partitioning
is applied alternatively to facilitate interactions across win-
dows.

Window based Multi-Shuffled-heads Transposed Atten-
tion. While spatial attention focuses on modeling interac-
tions of features in spatial domain, it neglects to explore
physical characteristics existing implicitly in the channel
dimension. Therefore, we propose W-MSTA to apply at-
tention across channels. The transposed attention is defined
as:

TAttention(Q,K,V) = V · SoftMax(QTK/β), (5)
where β is a learnable parameter, too. Since conventional
multi-heads attention divides channels into multiple groups,
the interactions through channels are insufficient. To tackle
the issue, we introduce the channel shuffle operation [11]
to enable intensive connections across channel groups. Fol-
lowing [11], the original features are firstly shuffled along
the channel dimension, according to feature dimension and
the number of heads. Then the channel-shuffled features are
partitioned into non-overlapped windows and fed into the
transposed attention module. Lastly, after the attention, the
channel-enhanced features are shuffled back to the original
arrangement.

Locally-Enhanced MLP. The window participation ap-
proach can cause border artifacts even with shift operations,
especially for sensitive polarization information. A 3 × 3
depth-wise convolution is employed after the first linear
projection layer and followed by GELU activation. The use
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Figure 4. (a) The architecture of proposed Transformer model.
↑, ↓, + and C in the circles denote upsample layer, downsample
layer, element-wise addition, and feature concatenation, respec-
tively. (b) Two successive Transformer blocks. W-MA and SW-
MA are Window-based Multi-head self Attention with regular and
window Shift strategies, respectively. W-MTA and W-MSTA are
Window-based Multi-head Transposed self Attention with regular
and channel Shuffle operations, respectively. (c) and (d) are illus-
trations of shifted windows and shuffled heads.

of convolution layers in a Transformer block plays crucial
roles in enhancing translation invariance in Transformer-
based networks [3, 7].

5. Experiment

For proposed Transformer model, from the first encoder
stage to the last decoder stage, the number of stacked Trans-
former blocks are [2, 6, 6, 8, 6, 6, 2], the number of channels
are [48, 96, 192, 384, 192, 96, 96], and the number of heads
are [1, 2, 4, 8, 4, 2, 2].

5.1. comparison

We show more visual comparisons in Figure 5. It can
be observed that Uformer∗, Restormer∗, and Ours∗, trained
on synthetic noisy images, restore more vivid details and
decrease the oversmoothing issue. Moreover, due to the
window-based hybrid attention mechanism, our denoising
model is able to remove noises and restore sharp details
for both images and polarization information. We further
count the number of parameters and FLOPs of Uformer,
Restormer, and the proposed model, as (50.89 M, 345.84
Mac), (27.03 M, 452.41 Mac), and (23.42 M, 346.14 Mac).
The proposed model outperforms Uformer and Restormer
with noticeably decreased parameters and FLOPs.

Table 1. Polarized color image denoising performance in
PSNR(dB)/SSIM calculated on images, DoLP and AoLP. Bold
values present the best best results. Nread and N∗

read represent
read out noises sampled with zero-mean and channel-wise biases
respectively.

image DoLP AoLP
PSNR/ SSIM PSNR PSNR

(a) paired w/ bias 33.01/0.922 23.23 14.75
(b) paired 34.42/0.927 23.56 14.89
(c) Nread 31.56 /0.849 22.79 13.12
(d) Nread +Np 33.81/ 0.907 23.64 14.96
(e) Nread +Np +Nb +Nq 33.94/0.914 23.69 15.04
(f) N∗

read +Np +Nb +Nq 33.93/0.915 23.65 15.07
(g) W/o joint dist. model 33.60/0.927 23.89 15.03
(h) W/o LS 33.93/ 0.914 23.74 14.92
(i) W/o W-MSTA 33.84/0.913 23.64 15.15
(j) W/o SW-MA 33.73/0.914 23.74 14.92

5.2. Ablation

Here, more ablation experiment results are exhibited and
all ablation experiments are conducted based on our pro-
posed Transformer model with noisy images at ×60 low-
light ratio for a significant comparison.

Table 1 (f) and (g) show the results of the model trained
with synthetic data generated with our joint noise distri-
bution or that proposed by [10], in which gain-wise and
channel-wise noise formulations are not considered. The
results indicate our proposed joint distribution can signif-
icantly improve the performance of both image denoising
and polarization restoration. The comparisons in Fig. 6 (f),
(g) indicate our proposed joint noise distribution benefits to
image denoising and sharp texture reconstruction.

Table 1 (i), (j), and (f) show ablation experiment results
on the proposed Transformer model consisting of (Shifted)
Window Multi-heads Attention ((S)W-MA, spatial-domain)
and Window Multi-Shuffled-heads Transposed Attention
(W-MT(S)A, channel-domain). The comparisons suggest a
spatial-domain self-attention contributes more to denoising
performance than channel-domain self-attention, but their
combination significantly improves the restoration. The re-
sults in Fig. 6 show the final proposed model (f) combining
spatial and channel domain self-attention restores vivid de-
tails than other settings (i), (j).
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trained on synthetic noisy images generated via our noise model.
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Figure 6. Visual comparison for ablation study. I90◦ , DoLP and AoLP are visualized and the labels represent settings presented in Table 1.
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