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1. The Significance of RIM

Figure 1. A case study of utilizing RIM for interactive image editing. The text inputs guide the interactive editing while the bold font
indicates the given language descriptions.

Referring Image Matting (RIM) refers to extracting the soft and accurate foregrounds from the images based on given
language descriptions. As a new task, we discuss the significance of RIM from the aspects of the industry impacts and
academic impacts.

RIM, as a dense prediction problem that needs the collaboration of language and vision, provides a pathway to controllable
image matting. Compared with conventional automatic image matting methods that can only predict a fixed set of pre-defined
categories, e.g, people [6], animal [7], classes [8] or all the salient objects at one time [11, 17], RIM is able to predict the alpha
matte of the specific foregrounds under language guidance, serving as a fundamental task for various downstream applications
such as interactive image editing, human-machine interaction, virtual reality, augmented reality, film production, e-commerce
promotion, etc. Compared with the other auxiliary user input-based image matting methods, e.g., trimap-based [16] and
scribble-based [5], RIM provides much more freedom for the users as the inputs are simple and straightforward language
descriptions.

As a novel task that has not been explored yet, RIM opens up lots of new research directions in the area of image matting.
For example, how to align the visual and text features to better exploit both semantic and details information for such a dense



level problem, how to bridge the domain gap between the typical composite training data and real-world testing data, how
to distinguish between the same type objects, etc. Our proposed RefMatte, along with the baseline method CLIPMat, can
serve as an initial starting point for such studies. Specifically, we discuss a case study and the differences with a related task
Referring Image Segmentation (RIS) as follows to further emphasize the significance of RIM.
A case study of RIM. Here we provide a case study of RIM as a concrete example of utilizing RIM in downstream applications,
e.g., interactive image editing. As can be seen from Figure 1, RIM is able to provide various interactive image editing results
based on customized user text input, including highlighting any objects of interest and pasting the objects of interest to a
reasonable background or a pure color. Different from the previous image matting methods that can only extract fixed-type
foregrounds or all the salient foregrounds, RIM can easily separate the adherent foregrounds and focus on the one that best
matches the language description. In this way, users can flexibly perform post-processing on either the cat with white and
black fur or the man with a camera taking photo or any other customized language they like.
The differences with RIS. RIM is a very different task compared with RIS from the following several aspects:

1. RIS is only able to predict the coarse contour shape of the foreground from a low-resolution image, while RIM can
predict the very fine details of the foregrounds from a high-resolution image.

2. RIS is a binary classification problem, while RIM is a pixel-level regression problem, requiring the datasets and methods
to be very different from the two problems.

3. Datasets designed for RIS [4,15] usually have low-resolution images and objects with very coarse shapes, while datasets
for RIM should be all high-resolution images that preserve as many details as possible, as in our RefMatte.

4. Methods designed for RIS usually focus on extracting semantic features [3, 9] while RIM methods require features at
both the (global) semantic level and (local) details level, making it more challenging, as in our proposed CLIPMat.

2. More Details about RefMatte
In this section, we provide more details about RefMatte, including the distribution of matting entities, linguistic details, and

more statistics and visual results.

2.1. The Distribution of Matting Entities

Dataset Category Split #Entities #Categories #Attrs.
per Entity

#Entities in
RefMatte train

#Entities in
RefMatte test

AM-2k [7] animal train 1800 20 3 1800 -
test 200 20 - 200

P3M-10k [6] human
train 9186 1

6
9186 -

test-1 485 1 - 485
test-2 492 1 - 492

AIM-500 [8] objects test 200 93 3 95 105

SIM [13] objects train 271 82 3 271 -
test 41 27 2 39

DIM [16] objects train 224 75 3 224 -
test 38 27 7 31

HATT [11] objects train 210 58 3 210 -
test 40 30 4 36

RefMatte (ours) all-types train 11799 230 3/6 11700 -
test 1388 66 - 1388

Table 1. Statistics of the matting entities in our RefMatte which come from previous matting datasets.

Here, we present more details about the previous matting datasets that we used to retrieve the entities in our RefMatte,
including the number of entities, categories, and attributes we generate per entity and the proportion of each dataset in our
RefMatte train and test split. The results can be seen from Table 1. As can be seen, AM-2k [7] contributes all images of the
animal categories, P3M-10k [6] contributes all images of the human category, and the others contribute the objects types like
smog, plant, transparent glasses, etc. The number of attributes per entity is 3 for animals and objects, and 6 for humans. The
proportion of each dataset in regard to the train and test split is shown in the table too. As can be seen, we try to reserve the



original split in each matting dataset except for migrating the long-tailed categories to the RefMatte train set. However, the
distribution of entities is unbalanced since most of them are human or animal. Thus, we duplicate some entities to form a
balanced proportion of human, animals, and objects as 5:1:1. The details are in the main paper.

2.2. Linguistic Details in RefMatte

In this subsection, we provide the linguistic details we used for constructing RefMatte, including the candidate words for
the attributes and synonyms of the human type, the definitions of transparent and salient entities, syntax templates in the basic
expressions, and the relationship words in the absolute/relative position expressions.

Candidate words for the human type To generate more precise synonyms, we define the basic synonyms for human type
as human being, citizenry, person, individual, mankind, mortal. In addition to them, depending
on the age, age group, and gender we defined, we provide more candidate words to serve as reasonable synonyms, which are
shown in Table 2. All the candidate words are used to form the expression randomly.

Age Age Group Synonyms for Female Synonyms for Male
0-2

child baby girl, little girl,
girl

baby boy, little boy,
boy

4-6
8-12

15-20 youth
girl, teenager, adolescent,

miss, missy,
young lady, young woman

boy, teenager, adolescent

25-32
adult woman,lady man38-43

48-53

60-100 senior
old woman, senior citizen,

pensioner
old man, senior citizen,

pensioner

Table 2. Synonyms of female and male at different age groups.

Definitions of transparent and salient entities Following Li et al. [8], we add the attributes transparent and salient
for all the entities in RefMatte. We define the entities with category name synonyms including smoke, glass, water, gauze,
lace, ice, bubble wrap, plastic bag, net, fire, flame, cloth, mesh bag, mesh, wine glass, ice cube, spider web, wine, cloud smog,
veil, wedding dress, fishing net, cloth net, light, water drop, drip, dew, crystal stone, beer as transparent ones. Those
entities with synonyms like smoke, water, gauze, lace, fire, flame, net, leaves, spider web, mesh, wine, smog, light, water spray
as non-salient ones. For all the other entities, we can easily define them as non-transparent ones or salient
ones, e.g., human and animal are both salient and non-transparent.

Syntax templates in the basic expressions We generate the basic expressions following the syntax templates as shown in
Table 3, the templates are different for the human type and others since a human has six attributes and others have only three.

type attributes syntax template

human

< att0 >: gender
< att1 >: age
< att2 >: non-transparent
< att3 >: salient
< att4 >: color
< att5 >: clothes type

the < att0−3 > < obj0 > with the < att4−5 >
the < att0−3 > < obj0 > wearing the < att4−5 >
the < att0−3 > < obj0 > in the < att4−5 >
the < att0−3 > < obj0 > who is dressed in < att4−5 >

others
< att0 >: color
< att1 >: non-/ transparent
< att2 >: non-/ salient

the < att0−2 > < obj0 >
the < obj0 > which is < att0−2 >

Table 3. Syntax template in the basic expression.

Relationship words in the absolute/relative position expressions As discussed in the paper, the syntax templates for the ab-



solute position expressions are the/a <att0> <att1>...<obj0> <rel0> the photo/image/picture or the/a
<obj0> which/that is <att0> <att1> <rel0> the photo/image/picture. The syntax templates for the rel-
ative position expression are the/a <att0> <att1>...<obj0> <rel0> the/a <att2> <att3>...<obj1> or the/a
<obj0> which/that is <att0> <att1> <rel0> the/a <obj1> which/that is <att2> <att3>. Here we pro-
vide the candidate prepositional phrases for the relationship words <rel0> in Table 4 for each position relationship. Please
note that the relationship middle is only used in the absolute position expressions.

Position
Relationship

< rel0 > in
absolute position expression

< rel0 > in
relative position expression

left

at the most left side of,
on the far left of,

at the leftmost edge of,
farthest to the left of

to the left of,
on the left side of,

at the left side of,beside,
next to,close to,near

right

at the most right side of,
on the far right of,

at the rightmost edge of,
farthest to the right of

to the right of,
on the right side of,

at the right side of,beside,
next to,close to,near

middle
in the middle of,
n the center of

-

top
on top of,

in the upper part of
above,over,on top of,on

bottom below,in the lower part of below,under,underneath
in front of in front of in front of

behind
behind,in the back of,

at the back of
behind,in the back of,

at the back of

Table 4. Relationship words in the absolute/relative position expressions.

2.3. The Statistics of RefMatte

We present more details about the statistics of RefMatte in Table 5. For keyword-setting, since the text description is the
entry-level category name, we remove the images with multiple entities belonging to the same category to avoid semantic
ambiguity. Consequently, we have 30,391 images in the training set and 1,602 images in the test set in this setting. The
numbers of alpha mattes, text descriptions, categories, attributes, and relationships are shown in the following columns,
respectively. The average text length in the keyword-based setting is about 1, since there is usually a single word for each
category, while it is much larger in the expression-based setting, i.e., about 17 in RefMatte and 12 in RefMatte-RW100.

Dataset Split
Image
Num.

Matte
Num.

Text
Num.

Category
Num.

Attrs.
Num.

Rels.
Num.

Text
Length

RefMatte train 30,391 77,849 77,849 230 - - 1.06
Keyword test 1,602 4,085 4,085 66 - - 1.04
RefMatte train 45,000 112,506 449,624 230 132 31 16.86

Expression test 2,500 6,243 24,972 66 102 31 16.80
RefMatte-RW100 test 100 221 884 29 135 34 12.01

Table 5. Statistics of RefMatte and RefMatte-RW100 regarding to the number of images, alpha mattes, text descriptions, categories, attributes,
relationship words, and the average length of texts.

We also generate the word cloud of the keywords and attributes of the entities as well as the relationships between the
entities in RefMatte in Figure 2. As can be seen, the dataset has a large portion of humans and animals since they are much
more common in the image matting task. The most frequent attributes in RefMatte are male, gray, transparent, and salient,
while the relationship words are more balanced, containing all kinds of relationships.



(a) (b) (c)

Figure 2. The word cloud of the keywords (a), attributes (b), and relationships (c) in RefMatte.

2.4. More Examples of RefMatte

We show more examples from our RefMatte training set and test set including their composition relations, keywords, basic
expressions, absolute position expressions, and relative position expressions in Figure 4. We also show more examples from
our RefMatte-RW100 test set, including their basic expression, absolute position expressions, relative position expressions,
and free expressions in Figure 5. The green dots in both figures indicate the target objects.

3. More Details of CLIPMat
In this section, we present more details of our proposed baseline method CLIPMat, including more details about the three

modules, i.e., CP (context-embedded prompt), TSP (text-driven semantic pop-up), and MDE (multi-level details extractor).
We also show the network structure of CLIPMat in Table 11.
Matting-related prefix templates We use a bag of words to serve as the matting-related prefix templates, aiming to reduce
the gap between the long sentence used during pre-training CLIP [12] and the “single” word in the keyword-setting in
RefMatte. Specifically, the templates in the bags of words are “{keyword}”, “a photo of a {keyword}”, “a photograph of a
{keyword}”, “an image of a {keyword}”, “a photo of the {keyword}”, “the foreground of the {keyword}”, “the mask
of the {keyword}”, “the alpha matte of the {keyword}”, “to extract the {keyword}”. The experiments have proved the
effectiveness of using them in enhancing the ability of the pre-trained CLIP text encoder for the image matting task.
TSP details With the input of TSP as visual feature from CLIP image encoder xv ∈ R(N+1)×Dv and text feature from CLIP
text encoder xt ∈ RL×Dt , where N = HW/P 2 stands for the number of patches (tokens) in the ViT transformer [1], the
additional one dimension denotes the class token which is not involved during feature reshaping, and L stands for the total
length of the text and embedding context. We show the details of TSP as follows. First, both xv and xt pass through a layer
norm, a linear layer, and another layer norm to align the feature dimension as D. Thus we have x′

v and x′
t with the same

dimension D. We then pop up the semantic information from the visual feature by guiding it with the text feature through
the cross-attention mechanism in transformer [14], thus we have xf ∈ R(N+1)×D. Furthermore, we adopt a self-attention
mechanism to refine xf and we adopt the residual connection to ease optimization. Finally, we pass xf through a layer norm
and a multilayer perception and then reshape it to RD′×h×w, where h = H

P and W = W
P . This process can be formulated as

follows:

x′
v = LN(Linear(LN(xv))), x′

v ∈ R(N+1)×D, (1)

x′
t = LN(Linear(LN(xt))), xt ∈ RL×D, (2)

xf = corss attn(x′
v, x

′
t, x

′
t), xf ∈ R(N+1)×D, (3)

xf = xf + self attn(xf , xf , xf ), xf ∈ R(N+1)×D, (4)

xf = reshape(MLP (LN(xf ))), xf ∈ RD′×h×w. (5)

MDE details For MDE, the input feature is one of the four transformer blocks in the CLIP image encoder and the original
image, denoted as xi

v where i ∈ {1, 2, 3, 4} and Xm ∈ R3×H×W , respectively. We show the details of MDE as follows. First,
we reshape xi

v and then normalize it by a 1× 1 convolution layer, resulting in xi
v ∈ R

Dv
2 × H

2i
×W

2i . For Xm, we first normalize
it by a 1×1 convolution layer and then down-sample it to the same size as xi

v via max pooling, resulting in xm ∈ R
Dv
2 × H

2i
×W

2i .
We then concatenate xi

v and xm to form xi
f ∈ RDv× H

2i
×W

2i , which will be fed into a convolution layer, a batch norm layer, and

a ReLU activation layer, results in the final output xi
f ∈ RDi× H

2i
×W

2i . Finally, xi
f is used as the input to the corresponding



decoder layer at each level via a residual connection, which can preserve the details. This process can be formulated as follows:

xi
v = norm(reshape(xi

v)), xi
v ∈ R

Dv
2 × H

2i
×W

2i , (6)

xm = maxpool(norm(xm)), xm ∈ R
Dv
2 × H

2i
×W

2i , (7)

xi
f = concat(xi

v, xm), xi
f ∈ RDv× H

2i
×W

2i , (8)

xi
f = relu(bn(conv(xi

f ))), xi
f ∈ RDi× H

2i
×W

2i . (9)

4. More Details of Experiments
4.1. More Details of Experiment Settings

To customize the RIS methods [3,9] for the newly proposed RIM task, we made slight changes to the existing methods for a
fair comparison. For CLIPSeg [9], we choose CLIP [12] pre-trained ViT-B/16 [1] as the image encoder and set the projection
dimension of the decoder as 64 (D=64). We add one sigmoid layer on the output to normalize it to standard matting output.
For MDETR [3], we choose ResNet-101 [2] as the image encoder, use the mask head as smallconv, and choose the prediction
mask with the highest probability as the final output. For our CLIPMat, the channel numbers in matting semantic and details
decoders are 768, 384, 192, and 96, respectively. We choose the CLIP [12] pre-trained ViT-B/16 and ViT-L/14 as the image
encoder, respectively. For ViT-L/14, we change the kernel size and stride of the patch embedding layer from 14 to 16 for a fair
comparison.

Both the CLIPSeg and MDETR use the weights that are further fine-tuned on VGPhraseCut [15]. However, CLIPMat
only uses the CLIP pre-trained weights directly without further fine-tuning on VGPhraseCut [15] as we find it is unnecessary,
which has also validated the value of our proposed RefMatte. For the parameters of position embedding that have a different
shape from the pre-trained one, we reshape them by interpolation. The input size for all the methods is 512× 512, and we
choose the largest batch size for each model, which is 32 for CLIPSeg, 8 for MDETR, 12 for CLIPMat(ViT/B-16), and 4 for
CLIPMat(ViT/L-14). All the learning rates are fixed as 1e− 4. For CLIPSeg and MDETR, the image and text encoders are all
frozen to follow the original design in their papers. For CLIPMat with ViT/B-16, the learning rates of the image encoder and
the text encoder are 1e− 6 and 1e− 7, respectively. For CLIPMat with ViT/L-14, the learning rates of the image encoder and
the text encoder are all 1e− 6. All the methods are trained 50 epochs on two NVIDIA A100 GPUs, which takes about 1 day
for CLIPMat(ViT/B-16) and 3 days for CLIPMat(ViT/L-14).

As for the optional matting refiner, we adopt the state-of-the-art automatic image matting model P3M from the work [6,10],
modifying the input from a single image to the image with a coarse map. We train the refiner on RefMatte with the settings
following the original paper to serve as an optional post-refiner in our case. We present both the visual results of CLIPMat
with or without the refiner in the following section, showing that CLIPMat already performs very well without the matting
refiner, although better results can be achieved with its help.

4.2. Further Evaluation of the Main Results

To provide a comprehensive evaluation of the results, besides the conventional evaluation metrics SAD (sum of absolute
differences), MSE (mean squared error), and MAD (mean absolute difference), we also calculate the average SAD, MSE,
and MAD for all the entities in each image and average them over the test set, denoted as SAD(E), MSE(E), and MAD(E),
respectively. Please note that SAD, MSE, MAD are calculated on the basis of the foreground entities, which indicate the
average error as per all foregrounds. However, SAD(E), MSE(E), MAD(E) are calculated on the basis of the images, indicating
the average error as per all images. Take the SAD and SAD(E) as examples, we show the details of them in Eq. (10) and
Eq. (11), where N stands for the number of images and M stands for the number of entities in one image (e.g., M = 2 if
the image contains a human and a dog). G stands for the ground truth label and P stands for the prediction. We simplify the
SAD of each image as |G− P |. Thus, SAD(E), MSE(E), and MAD(E) reflect the models’ ability to distinguish ambiguous
foregrounds in the same image, serving as a more strict evaluation metric.

SAD =
1

(N ×M)
× Σn

1 (Σ
m
1 |G− P |), (10)

SAD(E) =
1

N
× Σn

1 (
1

M
Σm

1 |G− P |). (11)



Here, we provide all the results of MDETR [3], CLIPSeg [9], and our proposed CLIPMat with or without the post-matting
refiner in Table 6. As can be seen, CLIPMat achieves the best results with both two backbones, where the larger backbone
and the post-matting refiner improve the performance further. It is also noteworthy that the post matting refiner improves the
results of MDETR and CLIPSeg by large margins, i.e., 32.27 to 27.33 for MDETR in keyword-based setting, 17.75 to 12.17
for CLIPSeg, but only improves a little bit for CLIPMat, i.e., 9.91 to 9.13 or 8.51 to 8.29. It owes to the excellent ability of
CLIPMat to preserve details. Besides, for almost all the methods, SAD(E), MSE(E), and MAD(E) are larger than SAD, MSE,
and MAD since they evaluate the ability of matting models to distinguish individual foreground in the same image, which
is more challenging. However, CLIPMat’s results on RefMatte-RW100 are even better in terms of SAD(E), MSE(E), and
MAD(E), showing that CLIPMat has a good ability to extracting the correct targets. Furthermore, we provide more visual
results to subjectively compare MDETR, CLIPSeg, and our proposed CLIPMat on the RefMatte test set and RefMatte-RW100
in both keyword and expression settings. The results are shown in the Figure 6 and Figure 7. As can be seen, CLIPMat
performs very well in all the settings and outperforms all the other methods.

Setting Method Backbone Refiner SAD MSE MAD SAD(E) MSE(E) MAD(E)

Keyword
setting

MDETR [3] ResNet-101 [2] - 32.27 0.0137 0.0183 33.52 0.0141 0.0190
MDETR [3] ResNet-101 [2] yes 27.33 0.0123 0.0155 28.22 0.0126 0.0160
CLIPSeg [9] ViT-B/16 [1] - 17.75 0.0064 0.0101 18.69 0.0067 0.0106
CLIPSeg [9] ViT-B/16 [1] yes 12.17 0.0042 0.0069 12.75 0.0044 0.0073

CLIPMat ViT-B/16 - 9.91 0.0028 0.0057 10.41 0.0029 0.0059
CLIPMat ViT-B/16 yes 9.13 0.0026 0.0052 9.56 0.0027 0.0055
CLIPMat ViT-L/14 - 8.51 0.0022 0.0049 8.98 0.0023 0.0051
CLIPMat ViT-L/14 yes 8.29 0.0022 0.0027 8.72 0.0023 0.0050

Expression
setting

MDETR [3] ResNet-101 [2] - 84.70 0.0434 0.0482 90.45 0.0463 0.0515
MDETR [3] ResNet-101 [2] yes 80.48 0.0424 0.0458 85.83 0.0452 0.0488
CLIPSeg [9] ViT-B/16 [1] - 69.13 0.0358 0.0394 73.53 0.0381 0.0419
CLIPSeg [9] ViT-B/16 [1] yes 64.48 0.0341 0.0367 68.56 0.0364 0.0391

CLIPMat ViT-B/16 - 47.97 0.0245 0.0273 50.84 0.0260 0.0273
CLIPMat ViT-B/16 yes 46.38 0.0239 0.0264 49.11 0.0253 0.0279
CLIPMat ViT-L/14 - 42.05 0.0212 0.0238 44.77 0.0226 0.0254
CLIPMat ViT-L/14 yes 40.37 0.0205 0.0229 43.03 0.0218 0.0244

RefMatte-
RW100

MDETR [3] ResNet-101 [2] - 131.58 0.0675 0.0751 136.59 0.0700 0.0779
MDETR [3] ResNet-101 [2] yes 125.78 0.0669 0.0717 130.72 0.0697 0.0744
CLIPSeg [9] ViT-B/16 [1] - 211.86 0.1178 0.1222 222.37 0.1236 0.1282
CLIPSeg [9] ViT-B/16 [1] yes 207.04 0.1166 0.1195 216.93 0.1222 0.1252

CLIPMat ViT-B/16 - 110.66 0.0614 0.0636 110.63 0.0612 0.0635
CLIPMat ViT-B/16 yes 107.81 0.0595 0.0620 107.23 0.0591 0.0616
CLIPMat ViT-L/14 - 88.52 0.0488 0.0510 87.92 0.0483 0.0505
CLIPMat ViT-L/14 yes 85.83 0.0474 0.0495 84.93 0.0468 0.0488

Table 6. Results on the RefMatte test set in two settings and the RefMatte-RW100 test set, a.k.a the complete version of Table 2 in the paper.

4.3. More Ablation Studies

4.3.1 Error Bars from Multiple Runs with Different Seeds

To calculate the error bars of our proposed method CLIPMat on RefMatte, we run the experiments on different random seeds
and test them on both the keyword-based and expression-based settings of the RefMatte test set and RefMatte-RW100. We
then report all the results in Table 7 by calculating the Standard Deviation (Std.) and mean value of the SAD. As can be seen,
CLIPMat performs very stably on both the RefMatte test set and RefMatte-RW100.

4.3.2 Impact of Input Texts

Impact of prompt templates We trained CLIPMat with our proposed matting-related pre-embedding context to enhance the
robustness of different input prompt templates. Here We investigate the impact of different prompt templates of CLIPMat(ViT-
B/16) and show the results in Table 8. The default setting for our previous experiments in the main results is a photo of



Dataset Setting SAD MSE MAD SAD-E MSE-E MAD-E

RefMatte
test set keyword

9.91 0.0028 0.0057 10.41 0.0029 0.0059
9.82 0.0028 0.0056 10.40 0.0029 0.0059

10.06 0.0030 0.0057 10.71 0.0031 0.0061
Error bar of SAD Mean: 9.93 Std.: 0.1212

RefMatte
test set expression

47.97 0.0245 0.0273 50.84 0.0260 0.0273
42.52 0.0215 0.0241 45.50 0.0231 0.0258
50.35 0.0259 0.0287 53.09 0.0273 0.0303

Error bar of SAD Mean 46.95 Std.: 4.0141

RefMatte
-RW100 expression

110.66 0.0614 0.0636 110.63 0.0612 0.0635
121.21 0.0676 0.0698 119.65 0.0667 0.0690
117.79 0.0657 0.0677 120.46 0.0670 0.0691

Error bar of SAD Mean: 116.55 Std.: 5.3826

Table 7. Results of CLIPMat with different random seeds on the RefMatte test set and RefMatte-RW100.

a {keyword}. As can be seen, CLIPMat is robust to all kinds of prompt templates while achieving the best results in the
setting an image of a {keyword}, and also performs very well on matting-related prompt templates, e.g., the foreground of
the {keyword}, to extract {keyword} and so on. We believe the success is owing to our careful design of matting-related
pre-context embedded prompts. More efforts on prompt augmentation could be made in future work to further improve the
performance.

prompt template SAD MSE MAD SAD(E) MSE(E) MAD(E)
{keyword} 9.95 0.0029 0.0057 10.45 0.0030 0.0060

a photo of a {keyword} 9.91 0.0028 0.0057 10.41 0.0029 0.0059
a photograph of a {keyword} 9.82 0.0028 0.0056 10.32 0.0029 0.0059

an image of a {keyword} 9.84 0.0028 0.0056 10.34 0.0029 0.0059
the foreground of the {keyword} 9.87 0.0028 0.0056 10.36 0.0029 0.0059

the mask of the {keyword} 9.90 0.0028 0.0057 10.39 0.0029 0.0059
the alpha matte of the {keyword} 10.01 0.0029 0.0057 10.50 0.0030 0.0060

to extract {keyword} 9.88 0.0028 0.0056 10.35 0.0029 0.0059

Table 8. Results of CLIPMat with different prompt templates on the RefMatte test set in the keyword-based setting.

Impact of different expressions Since we have introduced different types of expressions in our task, it is interesting to
investigate the influence of each type on matting performance. As shown in Table 9, we evaluate CLIPMat(ViT-B/16) on
the RefMatte test set and RefMatte-RW100. As can be seen, the relative position expression is more informative (or easy to
understand) than others, leading to the best performance on both the synthetic test set as well as the real-world one. Among
them, RPE-1, which is shorter and more straightforward compared with RPE-2 achieves the best result in the expression-based
setting. On the other hand, the absolute position expression has worse performance compared with relative ones in the
expression-based setting but has comparable performance in RefMatte-RW100, probably due to manually labeled annotations
being more straightforward and meaningful. Another interesting finding is that CLIPMat performs worse on basic expression
than position-based expression, which is counter-intuitive. We believe the reason is that the model has been trained towards
emphasizing the relationship between entities, resulting in a relatively poor ability to understand the entity and its own
attributes. For the RefMatte-RW100 dataset, FREE prompts, which are labeled by human annotators following their preferred
style, lead to the worst results, mainly due to the significant diversity of logic, grammar, and words used to describe the entities.
More efforts could be made to study the most effective expressions that matter in automatic applications as well as improve the
generalization ability of RIM models to deal with diverse expressions in human-machine interaction applications.



Setting prompt template SAD MSE MAD SAD(E) MSE(E) MAD(E)

Expression-based
setting

BE 59.20 0.0308 0.0337 62.81 0.0327 0.0357
APE 59.41 0.0310 0.0339 62.81 0.0328 0.0358

RPE-1 25.98 0.0120 0.0147 28.14 0.0131 0.0159
RPE-2 46.29 0.0236 0.0264 48.33 0.0246 0.0275

RefMatte-RW100
dataset

BE 152.11 0.0857 0.0880 156.44 0.0881 0.0905
APE 86.01 0.0469 0.0490 84.49 0.0458 0.0480
RPE 85.08 0.0458 0.0479 83.59 0.0446 0.0469

FREE 157.34 0.0883 0.0905 161.29 0.0905 0.0928

Table 9. Expression-based RIM results on RefMatte and RefMatte-RW100. BE: basic expression. APE: absolute position expression. RPE:
relative position expression. FE: free expression.

4.3.3 The Impact of Pre-training and Freezing

We further investigate the impact of pre-training models and freezing the parameters by conducting the ablation studies on
the keyword-based setting of RefMatte with CLIPMat(ViT-B/16) and presenting the results in Table 10. As can be seen,
freezing the parameters of CLIP [12] pre-trained image encoder and text encoder results in SAD of 20.05, while fine-tuning
the parameters as our proposed method results in SAD of 9.91. We hypothesize the benefits come from reducing the visual and
text gap between the RefMatte and the CLIP dataset through fine-tuning. We set the learning rate of the image encoder as 0.01
times of matting decoders, and the learning rate of the text encoder as 0.001 times of matting decoders. On the other hand,
pre-training CLIPMat on VGPhraseCut [15] does not provide performance improvement for CLIPMat, i.e., SAD of 11.33 v.s.
SAD of 9.91. Such results have also confirmed the value of RefMatte since training on it directly can achieve even better
results, implying that the proposed CLIPMat can serve as a simple and strong baseline for referring image matting.

CLIP-Pretrain CLIP-Freeze Phrasecut-Pretrain SAD MSE MAD SAD(E) MSE(E) MAD(E)
✓ ✓ 20.05 0.0084 0.0115 21.39 0.0089 0.0122

✓ 11.33 0.0036 0.0065 11.86 0.0037 0.0068
✓ 9.91 0.0028 0.0057 10.41 0.0029 0.0059

Table 10. Ablation studies of freezing the pre-trained CLIP [12] parameters and using VGPhraseCut [15] pre-trained weights.

4.4. Failure Cases

Figure 3. Some failure cases of CLIPMat, which is trained on RefMatte and tested on RefMatte-RW100. (a) Incorrect foreground instance.
(b) Incomplete foreground details.

Although our proposed CLIPMat shows good performance on both the synthetic images and the real-world images after
training on the RefMatte dataset, it still encounters some failure cases. We present some failure cases in Figure 3 (a) and
(b). As shown in the figure, CLIPMat fails to locate the accurate foreground under some complex or ambiguous expression
guidance. For example, as in (a), CLIPMat may not understand the word feman correctly and focus more on looking at the
camera. In some other cases, like shown in (b) in the figure, CLIPMat fails to extract all the details of the foreground, which



indicates the ability to preserve local details can be further improved. Such failure cases can be improved by 1) enhancing
CLIPMat’s abilities in understanding complex expressions and segmenting the foregrounds out with detailed boundaries,
especially for those which have occlusions with other entities; 2) reducing the domain gap between synthetic and real-world
images/expressions. We leave them as future work.
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Block name Output size Detail
CLIP - Text Encoder

embed N × 22(77)× 512 concatenate (text, context) + position embedding
T1 N × 22(77)× 512 transformer block (heads 8, width 512)

CLIP - Image Encoder
conv1 N × 768× 32× 32 conv (3× 3, 768, stride 16) + BN + ReLU
embed 1025×N × 768 + class embedding + position embeding
T1 1025×N × 768 transformer block (heads 12, width 768) × 3
T2 1025×N × 768 transformer block (heads 12, width 768) × 3
T3 1025×N × 768 transformer block (heads 12, width 768) × 3
T4 1025×N × 768 transformer block (heads 12, width 768) × 3

TSP
norm visual N × 1025× 256 LN + Linear(256) + LN
norm text N × 22(77)× 256 LN + Linear(256) + LN
cross attn N × 1025× 256 attention (256, heads=4, dropout=0.1)
self attn N × 1025× 256 attention (256, heads=4, dropout=0.1)

out N × 64× 32× 32 conv (1× 1, 64, stride 1)
Matting Semantic Decoder

D2 N × 32× 128× 128
[ conv (3× 3, 32, stride 3) + BN + ReLU ] × 2

upsample(4)

D1 N × 32× 512× 512
[ conv (3× 3, 32, stride 3) + BN + ReLU ] × 2

upsample(4)
D0 N × 3× 512× 512 conv (3× 3, 3, stride 1)

MDE

norm visual N × 384× H
2i

× H
2i

conv (1× 1, 384, stride 1)
upsample(24−i)

norm img N × 384× H
2i

× H
2i

conv (1× 1, 384, stride 1)
maxpool (2i)

out N ×Di × H
2i

× H
2i

concatenate (visual, img)
conv (3× 3, Di, stride 1) + BN + ReLU

Matting Details Decoder

D4 N × 384× 64× 64
[ conv (3× 3, 384, stride 3) + BN + ReLU ] × 2

upsample(2)

D3 N × 192× 128× 128
[ conv (3× 3, 192, stride 3) + BN + ReLU ] × 2

upsample(2)

D2 N × 96× 256× 256
[ conv (3× 3, 96, stride 3) + BN + ReLU ] × 2

upsample(2)

D1 N × 32× 512× 512
[ conv (3× 3, 32, stride 3) + BN + ReLU ] × 2

upsample(2)
D0 N × 1× 512× 512 conv (3× 3, 1, stride 1)

Collaborative Matting
CM N × 1× 512× 512 pixel-wise multiply for output from two matting decoders output .

Table 11. Network structure of our proposed CLIPMat, where N stands for batch size. The input of CLIPMat is a batch of images of the size
N × 3× 512× 512, and a batch of text descriptions of size N × 14 for keyword-setting and N × 69 for expression-setting as well as the
learnable context with size N × 8× 512.



Figure 4. More examples from our RefMatte dataset. The first column shows the composite images with different foreground instances, and
the second column and the third column show the ground truth alpha mattes and the natural language descriptions corresponding to the
specific instances indicated by the green dots, respectively.



Figure 5. More examples from our RefMatte-RW100. The first column shows real-world images with different foreground instances, and the
second column and the third column show the ground truth alpha mattes and the natural language descriptions corresponding to the specific
instances indicated by the green dots, respectively.



Figure 6. More subjective comparisons of different methods on the RefMatte under the keyword-based setting. From left to right: the
original image, the ground truth, MDETR [3], CLIPSeg [9], our proposed CLIPMat, and CLIPMat with the matting refiner. The text inputs
from the top to the bottom are: 1) net; 2) dandelion; 3) leaves; 4) human; 5) smog; 6) alpaca; 7) human; 8) flower; 9) leaves. We recommend
zooming in for more details.



Figure 7. More subjective comparisons of different methods on the RefMatte under the expression-based setting and the RefMatte-RW100.
From left to right: the original image, the ground truth, MDETR [3], CLIPSeg [9], our proposed CLIPMat, and CLIPMat with the matting
refiner. The text inputs from the top to the bottom are: 1) the plastic bag which is lightgray and transparent; 2) the fire which is wheat at the
most right side of the picture; 3) the woman in the crimson print on the left side of the rosybrown and salient brute; 4) the gray and salient
vase at the most right side of the picture; 5) the good-looking glass on the left part of the photo; 6) a long-haired man in a pink shirt and
sunglasses smiling; 7) a woman with long hair; 8) the lady in white clothes in the right of the picture. We recommend zooming in for more
details.



A. Datasheet of RefMatte
A.1. Motivation

1. For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed
to be filled? Please provide a description.

A1: RefMatte is created to facilitate the study of a new task: referring image matting (RIM). RIM is first introduced in
this paper as extracting the meticulous foreground in the image with linguistic keyword or expression as an auxiliary input.
However, prevalent visual grounding methods are all limited to the segmentation level, probably due to the lack of high-quality
datasets for RIM. To fill the gap, we establish the first large-scale challenging dataset RefMatte by designing a comprehensive
image composition and expression generation engine to produce synthetic images on top of current public high-quality matting
foregrounds with flexible logics and re-labelled diverse attributes.
2. Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution,
organization)?

A2: RefMatte is created by the authors.
3. Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and
the grant name and number.

A3: This study was supported by Australian Research Council Projects in part by FL170100117 and IH180100002.

A.2. Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there
multiple types of instances(e.g., movies, users, and ratings; people and interactions between them; nodes and edges)?
Please provide a description.

A1: The RefMatte dataset consists of images covering 230 categories which are very popular in the field of image matting,
and expressions describe each entity. Some typical types are humans, animals, plants, spiders web and so on. All the personally
identifiable information has been preserved for privacy consent.
2. How many instances are there in total (of each type, if appropriate)?

A2: The RefMatte dataset contains 230 object categories, 47,500 images, 118,749 expression-region entities with high-
quality alpha matte, and 474,996 expressions.
3. Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger
set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic
coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or
unavailable).

A3: The RefMatte itself is a large set that contains a large number of instances. It is large enough to be used for training
deep models. However, the composition and expression engines we designed make it possible and easy to extend the dataset to
a larger scale.
4. What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)or features? In either case,
please provide a description.

A4: Each instance consists of a high-resolution synthetic image generated by our composition engine, the high-quality
alpha matte of the specific entity, the keyword and the expressions that used to describe the specific entity.
5. Is there a label or target associated with each instance? If so, please provide a description.

A5: Yes. Each instance is associated with a label, including an alpha matte, a keyword name, and several expressions.
Some examples can be seen from the Figure 4 and Figure 5.
6. Is any information missing from individual instances? If so, please provide a description, explaining why this
information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but
might include, e.g., redacted text.

A6: No.
7. Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so,
please describe how these relationships are made explicit.

A7: Yes. We keep a JSON file to store the relationships between individual instances, i.e., information such as whether or
not multiple instances are located on the same image.
8. Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description
of these splits, explaining the rationale behind them.



A8: Yes. We split the dataset RefMatte into training and test sets manually. We keep all the long-tail categories in the
training set only. More details about the data splits can be found in Section 3.3 of the paper.
9. Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

A9: Although we have manually checked the annotation information very carefully, there may be some minor inaccurate
expression labels. However, since linguistic expression generated by real human is also subjective and may contains some
error. We believe this might be a source of noise to improve the generalization ability of trained models.
10. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other
datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant,
over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the
external resources that might apply to a future user? Please provide descriptions of all external resources and any
restrictions associated with them, as well as links or other access points, as appropriate.

A10: The RefMatte dataset is comprised of the publicly available datasets, including AM-2k [7], P3M-10k [6], AIM-500 [8],
SIM [13], DIM [16], and HATT [11]. These datasets are publicly available and can be downloaded from their websites. We
appreciate the significant contribution of the authors to the research community. We show the details of each matting dataset in
Section 2.1.
11. Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege
or by doctorpatient confidentiality, data that includes the content of individuals non-public communications)? If so,
please provide a description.

A11: No.
12. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise
cause anxiety? If so, please describe why.

A12: No.

A.3. Collection Process

1. How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie
ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-speech
tags, model-based guesses for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

A1: The data associated with each instance are generated through a semi-automatic style by combining the attribute
information predicted by pretrained models and manual annotations. We report the details in Section 3.1 of the paper.
2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)? How were these mechanisms or procedures validated?

A2: The matting entities in the dataset RefMatte are collected from publicly available datasets described above, which can
be directly downloaded from their websites. The final images are generated by our own proposed composition engine with the
details described in Section 3.2 of the paper.
3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?

A3: No.
4. Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)?

A4: The first author of this paper.
5. Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data
associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the
data associated with the instances was created.

A5: It took about 30 days to collect the data and about 2 months to complete organization and annotation.

A.4. Preprocessing/cleaning/labeling

1. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a
description. If not, you may skip the remainder of the questions in this section.



A1: Yes. First, we collect and clean the data from currently available matting datasets to serve as matting entities, then we
use our proposed composition and expression engine to generate the synthetic images with linguistic labels. The details can be
seen in Section 3 of the paper.
2. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future
uses)? If so, please provide a link or other access point to the “raw” data.

A2: N/A.
3. Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access
point.

A3: No. We process all the data with our code, which will be released.

A.5. Uses

1. Has the dataset been used for any tasks already? If so, please provide a description.
A1: No.

2. Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or
other access point.

A2: N/A.
3. What (other) tasks could the dataset be used for?

A3: The RefMatte dataset can be used for referring image matting studies. In addition, it can be used for machine learning
topics like domain adaptation, referring image localization, and one-shot/zero-shot referring image matting.
4. Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? For example, is there anything that a future user might need to know to avoid uses
that could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user
could do to mitigate these undesirable harms?

A4: No.
5. Are there tasks for which the dataset should not be used? If so, please provide a description.

A5: No.

A.6. Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description.

A1: Yes. The dataset will be made publicly available to the research community.
2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object
identifier (DOI)?

A2: It will be publicly available on the project website at https://github.com/JizhiziLi/RIM.
3. When will the dataset be distributed?

A3: The dataset will be distributed once the paper is accepted after peer-review.
4. Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable
terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or
otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions.

A4: It will be distributed under the CC BY-NC license.
5. Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please
describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing
terms, as well as any fees associated with these restrictions.

A5: No.
6. Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so,
please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting
documentation.

A6: No.

A.7. Maintenance

1. Who will be supporting/hosting/maintaining the dataset?
A1: The authors.



2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
A2: They can be contacted via email available on the project website.

3. Is there an erratum? If so, please provide a link or other access point.
A3: No.

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please
describe how often, by whom, and how updates will be communicated to users (e.g., mailing list, GitHub)?

A4: No.
5. Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not,
please describe how its obsolescence will be communicated to users.

A5: N/A.
6. If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so,
please provide a description. Will these contributions be validated/verified? If so, please describe how. If not, why not?
Is there a process for communicating/distributing these contributions to other users? If so, please provide a description.

A6: N/A.


