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A. Theoretical analysis
A.1. Fourier feature map induce a shift-invariant

kernel regression

Notice that ϕNTK(x) should be shift-invariant, i.e., if we
shift the training data {(xi, zi)}Ni=1 to {(xi +∆x, zi)}Ni=1,
and the corresponding kernel regression is ϕ+

NTK(x), we look
forward ϕ+

NTK(x+∆x) = ϕNTK(x). Researchers encode the
shift-invariant property by a Fourier feature map γ(x) =
1√
D
[cosBx⊤, sinBx⊤]⊤ : Rd 7→ R2D as input, where

x ∈ Rd, B ∈ RD×d, and Bij ∼ N (0, δ) [3]. The NTK can
be written as hNTK(x

⊤
i xj), hNTK : R 7→ R when xi on a

hypersphere, so NTK with feature map can be composed
as hNTK

(
γ(xi)

⊤γ(xj)
)
= hNTK

(
1
D1⊤

D cos (B(xi − xj))
)

which is shift-invariant. Then ϕNTK(γ(x + ∆x)) =
ϕNTK(γ(x)), and

ϕ′
NTK(x) = ϕNTK(γ(x)) =

N∑
i=1

(H−1z)ihNTK(xi,x),

where H is an n × n PSD matrix with entries Hij =
hNTK(xi,xj).

A.2. Proof of main theorem

Proof 1 (Proof of Theorem 1)

kD(xi,xj) = hNTK

(
1

D
1⊤
D cos (B(xi − xj))

)
= hNTK

(
D∑
l=1

1

D
cos (Bl,:(xi − xj))

)
,

where Bl,: is the l-th row of B.
Therefore,

lim
D→∞

kD(xi,xj) = hNTK
(
Ebl∼N (0,δ) cos

(
b⊤(xi − xj)

))
,
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where b ∈ Rd. Furthermore, limD→∞ kD(xi,xj) =

hNTK(e
−δ2∥xi−xj∥2

2). ■

Proof 2 (Proof of Corollary 1) As

lim
δ→∞
D→∞

kD(x,X) =

{
h(1)e⊤i x ∈ {xi}Ni=1 ,

h(0)1⊤
N x ̸∈ {xi}Ni=1 ,

then,

lim
δ→∞
D→∞

kD(X,X) = h(0)1N1⊤
N + (h(1)− h(0)) IN .

That is, the singular value of lim δ→∞
D→∞

kD(X,X) are

h(1), h(1) − h(0), . . . , h(1) − h(0). It’s evidence that
k∞(X,X) = lim δ→∞

D→∞
kD(X,X) is invertible when

h(1) ̸= h(0) and h(1) ̸= 0. Then

Φ′
NTK(X) = k∞(X,X)k∞(X,X)−1z = z,

that is ϕ′
NTK(xl) = zl.

As for x ̸∈ {xi}Ni=1,

Φ′
NTK(x) = k∞(x,X) · k−1

∞ (X,X)z

= h(0)1⊤
Nk−1

∞ (X,X) · z.
(1)

Note that k∞(X,X) is a particular matrix which has same
column summation that is

1⊤
N · k∞(X,X) = ((N − 1)h(0) + h(1))1⊤

N ,

therefore its corresponding eigenvalue is (N−1)h(0)+h(1).
Furthermore, as

1

(N − 1)h(0) + h(1)
1⊤
N = 1⊤

N · k−1
∞ (X,X),

we have, 1⊤
N is the left eigenvector of k∞(X,X)−1 and the

corresponding eigenvalue is 1
(N−1)h(0)+h(1) . Then bring it

back to Eq.1, we have

Φ′
NTK(x) =

h(0)

(N − 1)h(0) + h(1)
1⊤
Nz.

■
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B. Explain the proposed method step-by-step

For simplicity, we focus on a gray-scale image inpainting
task to illustrate the workflow of our method.
Task: Given a partially observed image X on X , where X ⊆
G =

{
( i
m , j

n )|i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}
}

, i.e.,
Z =

{
Xi,j | ( i

m , j
n ) ∈ X

}
, find X on unobserved G\X .

Input: Training set X × Z; initial network parameters
θa(0) = {θ(0),θr(0),θc(0)}; super-parameters λr, λc; it-
eration step t = 0.
Step 1: Calculate loss function. Loss function is
La(θa) = L(θ(t),X ,Z) + λrR(θr(t)) + λcR(θc(t)),
where L =

∑
(xi,zi)∈X×Z

∥∥ϕθ(t)(xi)− zi
∥∥2
2
, R(θr(t)) =

tr
(
X⊤L(θr(t))X

)
and R(θc(t)) = tr

(
XL(θc(t))X

⊤)
measure the similarity between rows and columns in im-
age respectively.
Step 2: Update parameters. Minimize La by updating pa-
rameters θa(t) with optimization algorithm such as Adam.
Iteration stops at t = T when La(θa(T )) is smaller than
some given precision.
Step 3: Output estimation. The pixel value of Xij on G\X
is predicted by ϕθ(T )(

i
m , j

n ).
For high-dimensional data such as video, the regularizer
captures the similarity between the vectorized frames.

C. Additional experiments

As a general image representation model, our method
can be readily applied to other image tasks, including those
higher dimensional ones. Table 1 shows that INRR outper-
forms INR in image denoising under variant noise types.
Besides, we have also verified that INRR shows its power in
video frame interpolation and RGB image inpainting.

Table 1. PSNR (dB) of denoised images by INR and INRR on (a) Baboon,
(b) Man, (c) Barbara, (d) Boats and (e) Cameraman.

Noise Type Method (a) (b) (c) (d) (e)

Gaussian (σ = 10) INR 28.5 29.3 30.5 30.8 33.1
INRR 29.0 29.7 30.6 31.2 33.3

Salt & Peper (r = 0.95) INR 21.9 23.0 25.4 24.7 25.9
INRR 22.0 23.1 25.8 24.9 25.9

Poisson (λ = 50) INR 23.2 24.9 27.0 25.9 27.7
INRR 23.6 25.2 27.1 26.3 28.1

Here we test INRR on video interpolation, where the data
is represented by ϕθ(x, y, t) = [r, g, b] : R3 7→ R3. Each
frame is an RGB image, as shown in Figure 1 (a). The tested
video is a scene of water droplets that owns 202 frames. We
sample 21 frames uniformly as training data; the rest are
test data. Figure 1 (b) shows that INRR can capture the non-
local self-similarity between different frames. The average
PSNR of INRR is 37.5 dB, while vanilla INR is 36.8 dB.
Furthermore, we have validated the inpainting performance
on a dataset BSD100 [2] which includes 100 RGB images.
The sampling mode is the same as in Figure 2(a) in the paper.

The average PSNR of INRR is 28.8 dB, while vanilla INR is
27.1 dB.

(a) (b)
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Figure 1. The similarity between different frames (a) can be captured by L
(L392) in INRR (b) which is helpful to frame interpolation.

D. Smoothness of Laplacian matrix

Figure 2. The first row show five different 256 × 256 gray-scale
images. The second row shows the column covariance matrix, and
the third row shows the row covariance matrix.

We first calculate the covariance matrix of the columns
and the rows in Figure 2. The covariance matrix of X is
C(X), where Cij = E[X:,i − E(X:,i)][X:,j − E(X:,j)],
which measures the similarity among the columns. While
the similarity among rows is C(X⊤). As we can see, all the
covariance matrices of various images are locally smoothly.
Dong et al. proposed to utilize the smoothness of the Lapla-
cian matrix by an extra regularizer [1]. We use an INR to
encode the smoothness in such a Laplacian matrix implicitly;
that is, our proposed INRR combines the self-similarity and
smoothness of the Laplacian matrix at the same time.

Because g(θ;u) is an INR which is a smooth FCN about

u, A(θ) =
exp(g⊤(θ;u)g(θ;u))

1⊤exp(g⊤(θ;u)g(θ;u))1
is smooth according to its

expression. It means that a slight change of u generally leads
to a slight change of L(θ) = D(θ) − A(θ), which can
be controlled by a Lipschitz constant. So we conclude that
A(θ) smoothes L(θ), which is different from the vanilla L.
Furthermore, we can deduce a conclusion similar to The-
orem 1 that the smoothness of L(θ) is controlled by the δ
of g(θ; ·). Smaller δ leads to a smoother result. Moreover,
INRR degenerates to AIR when δ → ∞.



(a)

(b)

(c)

(d)

Figure 3. Fitting a 256×256 synthetic data with a combine missing
at different training step with (a) single matrix (DMF with only one
factor), (b) DMF with three factors, (c) ReLU neural network, and
(d) SIREN. The effective rank of the fitted matrix is shown in (e).
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Figure 4. Fitting a 256× 256 synthetic data with Gaussian noise at
different training step with (a) single matrix (DMF with only one
factor), (b) DMF with three factors, (c) ReLU neural network, and
(d) SIREN. The effective rank of the fitted matrix is shown in (e).

E. Implicit bias

The neural network tends to converge to a good solution
and may suffer from over-fitting with the training goes. Re-
searchers explain this phenomenon by the implicit bias of
neural networks. We show the implicit bias by fitting the
synthetic data, which is sampled from function s(x, y) =

sin
(
25π sin

(
π
3 ·
√
x2 + y2

))
, where {(xi, yj)|i, j} is a

uniform 256×256 grid on [−1, 1]× [−1, 1], where the local
frequency of the synthetic data increases from boundary to
center. We show two tasks on such synthetic data: fitting the
incomplete data and the noisy data in Figure 3 and Figure 4,
respectively.

As Figure 3(a) shows, the single layer DMF fits all pixels
without bias, and the pixels of the fitted image increase
gradually. While Figure 3(b) shows the low-rank bias of the
three-layer DMF fitting the synthetic data from low-rank

to high-rank. Figure 3(c,d) shows that a fully connected
neural network’s bias is related to the data frequency and
sampling rate. With the bias mentioned above, it is possible
to complete an image without an extra explicit regularizer.
Similarly, these neural network has similar phenomenon
when fitting the noisy data.

F. Recovered image

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Result of image inpainting with three types of missing
data by different regularized INR including (b) INR without regu-
larization, (c) with TV, (d) L2, (e) AIR, (f) INRR, and (g) original
image. The hyper-parameters of benchmark models and algorithms
are adopted from the original paper.

We show the recovered image in Figure 5.
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