
In this section we reveal more implementation details
and provide more analytical and visual comparisons on the
shape reconstruction and segmentation performances.

A. Implementation Details

A.1. The neighbor loss

     

  

     
    

   
    

     
    

     
  

     
     

  

     
    

   
    

     
    

    

  

Figure 1. Visual explanation of the neighbor loss (Eq. (1)). For an
pixel at (i, j) on the target image IT (left), we compare it with its
neighboring region, Ni,j , on the reconstructed image IR (right).

In this paper, we introduce a new image-level neighbor
loss, Lnbr, that compares one pixel in the target image to a
small region in the reconstructed image:

Lnbr =
∑
x∈Ω

∥∥∥ min
∀x′∈N (x)

∥∥IT (x)− IR(x
′)
∥∥∥∥∥2

2
(1)

As shown in Fig. 1, for every pixel IT(i,j) in the target
image, we search in a 3 × 3 neighborhood N(i, j) in the
reconstructed image IR for the pixel that is most similar to
IT (i, j) in intensity. This neighbour loss accounts for small
misalignments of the face model during segmentation.

A.2. Training details

To train our proposed pipeline, the Adadelta optimizer is
used, with an initial learning rate of 0.1, and a decay rate
of 0.99 at every 5k iterations. The learning rate for the seg-
mentation network is 0.06 times the one for the reconstruc-
tion network. In every 30k iterations, 25k iters are for the
face autoencoder training, and the rest are for training the
segmentation network. For initialization, the face autoen-
coder is trained for 300k iterations. Afterwards, the face
autoencoder and segmentation network are trained jointly
for 200k iterations. The speed is evaluated on an RTX 2080
Ti, with batch size 12. It takes about 120 hours for the ini-
tialization of the face autoencoder, and about 80 hours to
train the complete pipeline. After the training, it takes 49
ms for reconstruction and 70 µs for segmentation on aver-
age for one image. The reconstruction and the segmentation
networks have 25.6M and 34.5M parameters, respectively.

FOCUS (ours)

FOCUS-MP (ours)

Figure 2. Quantitative comparison of the 3D reconstruction accu-
racy on the NoW [8] testset. The methods shown include: MICA
[11], DECA [3], the work of Dib et al. [2], 3DDFA V2 [5], MGC-
Net [9], RingNet [8], Deep3D (pytorch version) [1], and PRNet [4]

B. Quantitative Analysis

B.1. Reconstruction Performance.

Fig. 2 shows the cumulative error curves of the proposed
method and the state-of-the-arts regarding the NoW testset.
With a higher percentage of sampling points with lower er-
rors, FOCUS performs the best on the NoW testset.

We further compare analytically the distributions of re-
construction errors of DECA [3] and FOCUS on the NoW
validation set, as shown in Fig. 3. To further disentangle
the influence of outliers from other factors, we categorize
the samples according to the yaw angles (rounded off to
the nearest 10), and use the error bars under different poses
to reflect the distribution of the reconstruction errors. It
is obvious from the plots that FOCUS exceeds DECA in
mean errors and yields in much lower variations, even with-
out identity supervision (which emphasize the shape con-
sistency of a same identity) and with significantly less train-
ing data. Besides, the lower gap between errors and devia-
tions under occluded and unoccluded conditions shows that
the proposed method improves the outlier robustness. The
comparison between the FOCUS and FOCUS-MP pipelines
also indicates that the misfit prior improves the overall re-
construction accuracy.

B.2. Segmentation Performance.

Tab. 1 shows the segmentation performance on the Celeb
A HQ testset, which indicates that the masks predicted by
our method show a competitive accuracy, precision, and F1
score, compared to the skin detector used in [1].



Figure 3. The distribution of the reconstruction errors on the neutral and occluded subsets of the full NoW validation set. The results of
DECA [3] are on the left, our FOCUS model in the middle and our FOCUS-MP on the right. The x axis indicates the approximated poses
of the samples (rounded off to the nearest 10), and the y axis denotes the reconstruction error.

Table 1. Evaluation of occlusion segmentation accuracy on the CelebA-HQ testsets.

Unoccluded Occluded Overall
Method ACC PPV TPR F1 ACC PPV TPR F1 ACC PPV TPR F1

Deep3D [1] 0.95 0.98 0.97 0.97± 0.06 0.84 0.86 0.96 0.90± 0.08 0.89 0.92 0.96 0.93± 0.07
FOCUS (ours) 0.92 0.99 0.93 0.96± 0.02 0.86 0.95 0.87 0.91± 0.06 0.89 0.97 0.90 0.93± 0.05

Table 2. Reconstruction error (mm) on NoW validation subsets.
Unoccluded Subset Occluded Subset

Method medianmean std medianmean std
Backbone-Supervised 1.02 1.25 1.04 1.05 1.29 1.09

Backbone-Supervised-MP 1.00 1.23 1.02 1.03 1.28 1.08
Backbone-cutmix 1.05 1.28 1.04 1.08 1.33 1.11

Backbone-cutmix-MP 1.04 1.27 1.03 1.08 1.32 1.10
Backbone-cutout 1.03 1.28 1.06 1.09 1.34 1.10

Backbone-cutout-MP 1.02 1.25 1.04 1.08 1.32 1.09

B.3. Significance of the Misfit Prior

Regarding Table 2 in the paper, a paired t-test on the
NoW validation set shows a two-sided p-value of 3.4e-19,
less than 0.05. Hence, the mean errors before and after us-
ing the prior are not equal, indicating that the misfit prior
brings a substantial increase in reconstruction accuracy.

Tab. 2 shows the misfit prior generalizes well for our
fully-supervised counterparts.

B.4. Hyper-parameter Analysis

In this section we systematically evaluate the influence
of the hyper-parameters, η1 to η5, used for segmentation.
The total loss for training the segmentation network is:
LS = η1Lnbr + η2Ldist + η3Larea + η4Lpresv + η5Lbin

, with η1 = 15, η2 = 3, η3 = 0.5, and η4 = 2.5, and
η5 = 10. We call this set of parameters as ’standard parame-
ters’. We use the control variates method, namely changing
one of the parameters while fixing the others, to compare the
influence of each hyper-parameters. The accuracy (ACC),
precision (Positive Predictive Value, PPV), recall rate (True

Positive Rate, TPR), and F1 score (F1) reflect the segmen-
tation performance. We use the AR dataset [7] because the
segmentation labels are more accurate.

As shown in Fig. 4, with the increase of the neighbour
loss Lnbr or the perceptual-level loss Ldist, more pixels are
segmented as non-facial. On the contrary, when the area
loss Larea or the pixel-wise preserve loss Lpresv increases,
more pixels are taken as face. This observation is consistent
with our theory in section 3.2. Fig. 4 also indicates that the
indices are positively related to the area loss Larea and pre-
serving loss Lpresv, and are negatively related to the neigh-
bour loss Lnbr and the perceptual-level loss Ldist. The bi-
nary loss, Lbin, barely affects the segmentation.

Note that we did not excessively tune the loss weights,
therefore we expect that better settings exist which achieve
even higher performance.

C. Qualitative Comparison and Ablation
Study

In this section, we provide more visual results of out
method on the Celeb A HQ testset [6], the AR dataset [7],
and the NoW testset [8].

Figs. 5 to 8 show the results under general occlusions,
extreme lighting, skin-colored occlusions, and large poses,
respectively.

Figs. 9 and 10 provide a visual comparison among the
ablated pipelines. It highlights that the outlier robust func-
tion is not robust to illumination variations, and the seg-
mentation network brings great benefit to the robustness to
illumination. The neighbour loss encourages the network to



produce smoother results, and the perceptual losses help to
locate the occlusions more accurately. Generally, the recon-
struction performance of our proposed method are the best
one and the segmentation accuracies are also competitive.

Fig. 11 show the intermediate results during the EM-like
training introduced in section 3.2. The estimated masks get
more accurate given better reconstruction results and the re-
constructed faces show more details when provided with
better segmentation masks, indicating the synergy effect of
the reconstruction and segmentation networks.

D. Societal Impact
In general, our FOCUS pipeline has the potential to

bring face reconstruction to the real world and to save
costs of occlusion or skin labeling, which is generally
required in many existing deep-learning-based methods.
The model-based reconstruction methods improved by our
method could contribute to many applications, including
Augmented Reality (AR), Virtual Reality (VR), surveil-
lance, 3D design, and so on. Each of these applications may
bring societal and economic benefits, and risks at the same
time: The application of AR or VR could bring profits to
the entertainment industry and also may result in unethical
practices such as demonizing the image of others, identity
fraud, and so on. The application of surveillance could help
arrest criminals, yet might also invade the privacy and safety
of others. The application in 3D design enables the quick
capture of the 3D shape of an existing face but might also
cause problems in portrait rights.



Figure 4. Analysis of hyper-parameters. The subplots show the change of for indices, namely accuracy, precision, F1 score, and recall
rate, with the change of the hyper-parameters. The corresponding segmentation results are shown below each subplot. In each subplot,
to evaluate the effect of each hyper parameter ηi, the other hyper-parameters ηj(j 6= i) are fixed. The red dots denote the ’standard
parameters’ used in the paper.
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Figure 5. Comparison on random samples in the Celeb A HQ [6] testset and the AR dataset [7]. (a) Target image. (b) and (c) Reconstruc-
tion and segmentation results of the Deep3D network [1]. d) Reconstructed result of the MoFA network [10]. (e) and (f) Reconstruction
and segmentation results of ours.
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Figure 6. Comparison on samples with extreme illumination conditions in the Celeb A HQ [6] and the AR [7] testsets. (a) Target image.
(b) and (c) Reconstruction and segmentation results of the Deep3D network [1]. d) Reconstructed result of the MoFA network [10]. (e)
and (f) Reconstruction and segmentation results of ours.
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Figure 7. Comparison on samples with outliers that the skin detector in [1] fails to locate in the Celeb A HQ testset [6]. (a) Target image.
(b) and (c) Reconstruction and segmentation results of the Deep3D network [1]. d) Reconstructed result of the MoFA network [10]. (e)
and (f) Reconstruction and segmentation results of ours.
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Figure 8. Comparison on samples with outliers and large poses in the NoW Database [8] shows that our method can effectively handle
outliers even when there are large poses. (a) Target image. (b) and (c) Reconstruction and segmentation results of the Deep3D network [1].
d) Reconstructed result of the MoFA network [10]. (e) and (f) Reconstruction and segmentation results of ours.
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Figure 9. Qualitative comparison for ablation study on the Celeb
A HQ testset [6]. From left to right are (a) target images, masks
estimated by the (b) ’Pretrained’, (c) ’Baseline’, (d) ’Neighbour’,
and (e) ’Perceptual’ pipelines, and (f) the reconstruction results
and (g) predicted masks of FOCUS, respectively.
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Figure 10. Qualitative comparison for ablation study on the AR
testset [7]. From left to right are (a) target images, masks estimated
by the (b) ’Pretrained’, (c) ’Baseline’, (d) ’Neighbour’, and (e)
’Perceptual’ pipelines, and (f) the reconstruction results and (g)
predicted masks of FOCUS, respectively.
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Figure 11. Target images (a) and intermediate results during the EM-like training. The intermediate masks and reconstructed faces predicted
by: the initialized model introduced in section 3.3 (b and g), and the trained model after the first (c and h), second (d and i), third (e and j),
and last (f and k) round of EM training.
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